scispace - formally typeset
Search or ask a question
Author

Natalia V. Gulyaeva

Bio: Natalia V. Gulyaeva is an academic researcher from Russian Academy of Sciences. The author has contributed to research in topics: Hippocampus & Hippocampal formation. The author has an hindex of 24, co-authored 241 publications receiving 2334 citations. Previous affiliations of Natalia V. Gulyaeva include Russian Academy & Moscow State University.


Papers
More filters
Journal ArticleDOI
TL;DR: A gradually developing oxidative stress was evident in the hippocampus of rats treated with Abeta(25-35) as indicated by the increase in 2-thiobarbituric acid (TBARS) reactive substances and superoxide generation, suggesting the involvement of oxidative stress in Abeta-induced neurodegeneration and a relation between memory impairment and neurodegenersation in the CA1 subfield of the hippocampus.

134 citations

Journal ArticleDOI
TL;DR: The present review focuses on the numerous experimental rodent models of depression induced by different stress factors during early life (including prenatal period) or adulthood, giving emphasis to the data on the changes of neurotrophic factors and neuroinflammatory indices in the brain.
Abstract: Rodent models are an indispensable tool for studying etiology and progress of depression. Since interrelated systems of neurotrophic factors and cytokines comprise major regulatory mechanisms controlling normal brain plasticity, impairments of these systems form the basis for development of cerebral pathologies, including mental diseases. The present review focuses on the numerous experimental rodent models of depression induced by different stress factors (exteroceptive and interoceptive) during early life (including prenatal period) or adulthood, giving emphasis to the data on the changes of neurotrophic factors and neuroinflammatory indices in the brain. These parameters are closely related to behavioral depression-like symptoms and impairments of neuronal plasticity and are both gender- and genotype-dependent. Stress-related changes in expression of neurotrophins and cytokines in rodent brain are region-specific. Some contradictory data reported by different groups may be a consequence of differences of stress paradigms or their realization in different laboratories. Like all experimental models, stress-induced depression-like conditions are experimental simplification of clinical depression states; however, they are suitable for understanding the involvement of neurotrophic factors and cytokines in the pathogenesis of the disease—a goal unachievable in the clinical reality. These major regulatory systems may be important targets for therapeutic measures as well as for development of drugs for treatment of depression states.

132 citations

Journal ArticleDOI
TL;DR: The results suggest that Abeta(25-35) preferably induces impairments of spatial and non-spatial short-term (working) memory rather than long-term memory in rats.

108 citations

Journal ArticleDOI
TL;DR: A new hypothesis is suggested on the principal involvement of stress response mechanisms in the remote hippocampal damage underlying delayed dementia and depression induced by focal brain damage (e.g. post-stroke and post-traumatic) and the translational validity of this hypothesis comprising new approaches in preventing post- stroke andPost-trauma depression and dementia can be confirmed in experimental and clinical studies.
Abstract: The hippocampus is not a homogeneous brain area, and the complex organization of this structure underlies its relevance and functional pleiotropism. The new data related to the involvement of the ventral hippocampus in the cognitive function, behavior, stress response and its association with brain pathology, in particular, depression, are analyzed with a focus on neuroplasticity, specializations of the intrinsic neuronal network, corticosteroid signaling through mineralocorticoid and glucocorticoid receptors and neuroinflammation in the hippocampus. The data on the septo-temporal hippicampal gradient are analyzed with particular emphasis on the ventral hippocampus, a region where most important alteration underlying depressive disorders occur. According to the recent data, the existing simple paradigm “learning (dorsal hippocampus) versus emotions (ventral hippocampus)” should be substantially revised and specified. A new hypothesis is suggested on the principal involvement of stress response mechanisms (including interaction of released glucocorticoids with hippocampal receptors and subsequent inflammatory events) in the remote hippocampal damage underlying delayed dementia and depression induced by focal brain damage (e.g. post-stroke and post-traumatic). The translational validity of this hypothesis comprising new approaches in preventing post-stroke and post-trauma depression and dementia can be confirmed in experimental and clinical studies.

88 citations

Journal ArticleDOI
TL;DR: The articles in this issue are focused on different “hot points” in the research area of biochemical mechanisms supporting neuroplasticity.
Abstract: Biochemical processes in synapses and other neuronal compartments underlie neuroplasticity (functional and structural alterations in the brain enabling adaptation to the environment, learning, memory, as well as rehabilitation after brain injury). This basic molecular level of brain plasticity covers numerous specific proteins (enzymes, receptors, structural proteins, etc.) participating in many coordinated and interacting signal and metabolic processes, their modulation forming a molecular basis for brain plasticity. The articles in this issue are focused on different "hot points" in the research area of biochemical mechanisms supporting neuroplasticity.

76 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

01 Jan 2010
TL;DR: In this paper, the authors describe a scenario where a group of people are attempting to find a solution to the problem of "finding the needle in a haystack" in the environment.
Abstract: 中枢神経系疾患の治療は正常細胞(ニューロン)の機能維持を目的とするが,脳血管障害のように機能障害の原因が細胞の死滅に基づくことは多い.一方,脳腫瘍の治療においては薬物療法や放射線療法といった腫瘍細胞の死滅を目標とするものが大きな位置を占める.いずれの場合にも,細胞死の機序を理解することは各種病態や治療法の理解のうえで重要である.現在のところ最も研究の進んでいる細胞死の型はアポトーシスである.そのなかで重要な位置を占めるミトコンドリアにおける反応および抗アポトーシス因子について概要を紹介する.

2,716 citations

01 Jan 1999
TL;DR: Caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases as discussed by the authors, and they play critical roles in initiation and execution of this process.
Abstract: ■ Abstract Apoptosis is a genetically programmed, morphologically distinct form of cell death that can be triggered by a variety of physiological and pathological stimuli. Studies performed over the past 10 years have demonstrated that proteases play critical roles in initiation and execution of this process. The caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases. Caspases are synthesized as relatively inactive zymogens that become activated by scaffold-mediated transactivation or by cleavage via upstream proteases in an intracellular cascade. Regulation of caspase activation and activity occurs at several different levels: ( a) Zymogen gene transcription is regulated; ( b) antiapoptotic members of the Bcl-2 family and other cellular polypeptides block proximity-induced activation of certain procaspases; and ( c) certain cellular inhibitor of apoptosis proteins (cIAPs) can bind to and inhibit active caspases. Once activated, caspases cleave a variety of intracellular polypeptides, including major structural elements of the cytoplasm and nucleus, components of the DNA repair machinery, and a number of protein kinases. Collectively, these scissions disrupt survival pathways and disassemble important architectural components of the cell, contributing to the stereotypic morphological and biochemical changes that characterize apoptotic cell death.

2,685 citations

01 May 2005

2,648 citations