scispace - formally typeset
Search or ask a question
Author

Natalie Amoin Kouame

Other affiliations: University of Paris-Sud
Bio: Natalie Amoin Kouame is an academic researcher from Université Paris-Saclay. The author has contributed to research in topics: Photocatalysis & Conductive polymer. The author has an hindex of 4, co-authored 4 publications receiving 612 citations. Previous affiliations of Natalie Amoin Kouame include University of Paris-Sud.

Papers
More filters
Journal ArticleDOI
TL;DR: One-dimensional poly(diphenylbutadiyne) nanostructures synthesized by photopolymerization using a soft templating approach have high photocatalytic activity under visible light without the assistance of sacrificial reagents or precious metal co-catalysts.
Abstract: Visible-light-responsive photocatalysts can directly harvest energy from solar light, offering a desirable way to solve energy and environment issues. Here, we show that one-dimensional poly(diphenylbutadiyne) nanostructures synthesized by photopolymerization using a soft templating approach have high photocatalytic activity under visible light without the assistance of sacrificial reagents or precious metal co-catalysts. These polymer nanostructures are very stable even after repeated cycling. Transmission electron microscopy and nanoscale infrared characterizations reveal that the morphology and structure of the polymer nanostructures remain unchanged after many photocatalytic cycles. These stable and cheap polymer nanofibres are easy to process and can be reused without appreciable loss of activity. Our findings may help the development of semiconducting-based polymers for applications in self-cleaning surfaces, hydrogen generation and photovoltaics.

548 citations

Journal ArticleDOI
TL;DR: The PEDOT nanostructures synthesized in soft templates via chemical oxidative polymerization demonstrate unprecedented photocatalytic activities for water treatment without the assistance of sacrificial reagents or noble metal co-catalysts and turn out to be better than TiO2 as benchmark catalyst.
Abstract: The development of visible-light responsive photocatalysts would permit more efficient use of solar energy, and thus would bring sustainable solutions to many environmental issues. Conductive polymers appear as a new class of very active photocatalysts under visible light. Among them poly(3,4-ethylenedioxythiophene) (PEDOT) is one of the most promising conjugated polymer with a wide range of applications. PEDOT nanostructures synthesized in soft templates via chemical oxidative polymerization demonstrate unprecedented photocatalytic activities for water treatment without the assistance of sacrificial reagents or noble metal co-catalysts and turn out to be better than TiO2 as benchmark catalyst. The PEDOT nanostructures exhibit a narrow band gap (E = 1.69 eV) and are characterized by excellent ability to absorb light in visible and near infrared region. The novel PEDOT-based photocatalysts are very stable with cycling and can be reused without appreciable loss of activity. Interestingly, hollow micrometric vesicular structures of PEDOT are not effective photocatalysts as compared to nanometric spindles suggesting size and shape dependent photocatalytic properties. The visible-light active photocatalytic properties of the polymer nanostructures present promising applications in solar light harvesting and broader fields.

100 citations

Journal ArticleDOI
TL;DR: In this article, the surface modification of titania was studied by EDS and XPS analysis, and the results showed that AgCu nanoparticles exist in a Agcore-Cushell form.

98 citations

Journal ArticleDOI
TL;DR: In this paper, small Bi zero-valent clusters were synthesized on TiO2-P25 by radiolysis and shown to be very stable with cycling under visible light.
Abstract: The important challenge in photocatalysis is to find efficient and stable photocatalysts under visible light. Small Bi zero-valent clusters were synthesized on TiO2-P25 by radiolysis. Photocatalytic tests were conducted under UV, visible and solar light with rhodamine B and phenol as model pollutants. Surface modification of TiO2 with zero-valent Bi nanoclusters induces high photocatalytic activity under visible light. Very small amounts of Bi (0.5 wt%) can activate titania for photocatalytic applications under visible light. Time resolved microwave conductivity measurements indicate that under visible irradiation Bi nanoclusters inject electrons into the conduction band of TiO2. These photocatalysts are very stable with cycling.

33 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the fundamental mechanism of heterogeneous photocatalysis, advantages, challenges and the design considerations of g-C3N4-based photocatalysts are summarized, including their crystal structural, surface phisicochemical, stability, optical, adsorption, electrochemical, photoelectrochemical and electronic properties.

2,132 citations

Journal ArticleDOI
TL;DR: Various cocatalysts, such as the biomimetic, metal-based,Metal-free, and multifunctional ones, and their selectivity for CO2 photoreduction are summarized and discussed, along with the recent advances in this area.
Abstract: Photoreduction of CO2 into sustainable and green solar fuels is generally believed to be an appealing solution to simultaneously overcome both environmental problems and energy crisis. The low selectivity of challenging multi-electron CO2 photoreduction reactions makes it one of the holy grails in heterogeneous photocatalysis. This Review highlights the important roles of cocatalysts in selective photocatalytic CO2 reduction into solar fuels using semiconductor catalysts. A special emphasis in this review is placed on the key role, design considerations and modification strategies of cocatalysts for CO2 photoreduction. Various cocatalysts, such as the biomimetic, metal-based, metal-free, and multifunctional ones, and their selectivity for CO2 photoreduction are summarized and discussed, along with the recent advances in this area. This Review provides useful information for the design of highly selective cocatalysts for photo(electro)reduction and electroreduction of CO2 and complements the existing reviews on various semiconductor photocatalysts.

1,365 citations

Journal ArticleDOI
TL;DR: A review of mesoporous materials can be found in this paper, where the authors summarize the primary methods for preparing mesopore materials and discuss their applications as electrodes and/or catalysts in solar cells, solar fuel production, rechargeable batteries, supercapacitors and fuel cells.
Abstract: To meet the growing energy demands in a low-carbon economy, the development of new materials that improve the efficiency of energy conversion and storage systems is essential. Mesoporous materials offer opportunities in energy conversion and storage applications owing to their extraordinarily high surface areas and large pore volumes. These properties may improve the performance of materials in terms of energy and power density, lifetime and stability. In this Review, we summarize the primary methods for preparing mesoporous materials and discuss their applications as electrodes and/or catalysts in solar cells, solar fuel production, rechargeable batteries, supercapacitors and fuel cells. Finally, we outline the research and development challenges of mesoporous materials that need to be overcome to increase their contribution in renewable energy applications. Mesoporous materials are finding increasing uses in energy conversion and storage devices. This Review highlights recent developments in the synthesis of mesoporous materials and their applications as electrodes and/or catalysts in solar cells, solar fuel production, rechargeable batteries, supercapacitors and fuel cells.

949 citations

Journal ArticleDOI
TL;DR: It is shown that the di acetylene moieties have a profound effect as the diacetylene- based COF largely outperforms the acetylene-based COF in terms of photocatalytic activity.
Abstract: Covalent organic frameworks (COFs) are crystalline, highly porous, two- or three-dimensional polymers with tunable topology and functionalities. Because of their higher chemical stabilities in comparison to their boron-linked counterparts, imine or β-ketoenamine linked COFs have been utilized for a broad range of applications, including gas storage, heterogeneous catalysis, energy storage devices, or proton-conductive membranes. Herein, we report the synthesis of highly porous and chemically stable acetylene (−C≡C−) and diacetylene (−C≡C–C≡C−) functionalized β-ketoenamine COFs, which have been applied as photocatalyst for hydrogen generation from water. It is shown that the diacetylene moieties have a profound effect as the diacetylene-based COF largely outperforms the acetylene-based COF in terms of photocatalytic activity. As a combined effect of high porosity, easily accessible diacetylene (−C≡C–C≡C−) functionalities and considerable chemical stability, an efficient and recyclable heterogeneous photoca...

549 citations

Journal ArticleDOI
TL;DR: In this critical review, the recent progress and advances of COF photocatalysts are thoroughly presented and diverse linkers between COF building blocks such as boron- containing connections and nitrogen-containing connections are summarised and compared.
Abstract: In the light of increasing energy demand and environmental pollution, it is urgently required to find a clean and renewable energy source. In these years, photocatalysis that uses solar energy for either fuel production, such as hydrogen evolution and hydrocarbon production, or environmental pollutant degradation, has shown great potential to achieve this goal. Among the various photocatalysts, covalent organic frameworks (COFs) are very attractive due to their excellent structural regularity, robust framework, inherent porosity and good activity. Thus, many studies have been carried out to investigate the photocatalytic performance of COFs and COF-based photocatalysts. In this critical review, the recent progress and advances of COF photocatalysts are thoroughly presented. Furthermore, diverse linkers between COF building blocks such as boron-containing connections and nitrogen-containing connections are summarised and compared. The morphologies of COFs and several commonly used strategies pertaining to photocatalytic activity are also discussed. Following this, the applications of COF-based photocatalysts are detailed including photocatalytic hydrogen evolution, CO2 conversion and degradation of environmental contaminants. Finally, a summary and perspective on the opportunities and challenges for the future development of COF and COF-based photocatalysts are given.

481 citations