scispace - formally typeset
Search or ask a question
Author

Natalie C. Johnson

Bio: Natalie C. Johnson is an academic researcher from Brown University. The author has contributed to research in topics: Mercury (element) & Sorbent. The author has an hindex of 2, co-authored 2 publications receiving 154 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This work characterizes the time-resolved release of mercury vapor from broken CFLs and from underlying substrates after removal of glass fragments to simulate cleanup, and successfully suppressed Hg vapor escape following CFL fracture.
Abstract: The projected increase in the use of compact fluorescent lamps (CFLs) motivates the development of methods to manage consumer exposure to mercury and its environmental release at the end of lamp life. This work characterizes the time-resolved release of mercury vapor from broken CFLs and from underlying substrates after removal of glass fragments to simulate cleanup. In new lamps, mercury vapor is released gradually in amounts that reach 1.3 mg or 30% of the total lamp inventory after four days. Similar time profiles but smaller amounts are released from spent lamps or from underlying substrates. Nanoscale formulations of S, Se, Cu, Ni, Zn, Ag, and WS2 are evaluated for capture of Hg vapor under these conditions and compared to conventional microscale formulations. Adsorption capacities range over 7 orders of magnitude, from 0.005 (Zn micropowder) to 188 000 microg/g (unstabilized nano-Se), depending on sorbent chemistry and particle size. Nanosynthesis offers clear advantages for most sorbent chemistries. Unstabilized nano-selenium in two forms (dry powder and impregnated cloth) was successfully used in a proof-of-principle test for the in situ, real-time suppression of Hg vapor escape following CFL fracture.

146 citations

Journal ArticleDOI
TL;DR: The article presents results on equilibrium Hg vapor pressure above lamp debris, mathematical modeling of reaction and transport processes within reactive barriers, and landfill stability of nanoselenium and its reaction products.
Abstract: Compact fluorescent lamps contain small quantities of mercury, release of which can lead to human exposures of potential concern in special cases involving multiple lamps, confined spaces, or young children. The exposure scenarios typically involve solid lamp debris that slowly releases elemental mercury vapor to indoor spaces. Here we propose and demonstrate a reactive barrier approach for the suppression of that mercury release, and demonstrate the concept using uncoated amorphous nanoselenium as the reactive component. Multilayer structures containing an impregnated reactive layer and a mercury vapor barrier are fabricated, characterized, and evaluated in three exposure prevention scenarios: carpeted break sites, disposal/recycling bags, and boxes as used for retail sales, shipping, and collection. The reactive barriers achieve significant suppression of mercury release to indoor spaces in each of thethree scenarios. The nanoselenium barriers also exhibit a unique indicator function that can reveal the location of Hg contamination by local reaction-induced change in optical properties. The article also presents results on equilibrium Hg vapor pressure above lamp debris, mathematical modeling of reaction and transport processes within reactive barriers, and landfill stability of nanoselenium and its reaction products.

26 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work demonstrates how two-dimensional covalent organic frameworks (COFs) with well-defined mesopore structures display the right combination of properties to serve as a scaffold for decorating coordination sites to create ideal adsorbents in environmental remediation.
Abstract: A key challenge in environmental remediation is the design of adsorbents bearing an abundance of accessible chelating sites with high affinity, to achieve both rapid uptake and high capacity for the contaminants. Herein, we demonstrate how two-dimensional covalent organic frameworks (COFs) with well-defined mesopore structures display the right combination of properties to serve as a scaffold for decorating coordination sites to create ideal adsorbents. The proof-of-concept design is illustrated by modifying sulfur derivatives on a newly designed vinyl-functionalized mesoporous COF (COF-V) via thiol–ene “click” reaction. Representatively, the material (COF-S-SH) synthesized by treating COF-V with 1,2-ethanedithiol exhibits high efficiency in removing mercury from aqueous solutions and the air, affording Hg2+ and Hg0 capacities of 1350 and 863 mg g–1, respectively, surpassing all those of thiol and thioether functionalized materials reported thus far. More significantly, COF-S-SH demonstrates an ultrahigh ...

712 citations

Journal ArticleDOI
TL;DR: Pediatricians, nurses, and other health care providers should understand the scope of mercury exposures and health problems among children and be prepared to handle mercury exposures in medical practice.

435 citations

Journal ArticleDOI
TL;DR: This manuscript provides a forward looking assessment of the promise of nanomedicine as it pertains to individualized medicine and establishes a technology "snapshot" of the current state of nano-based products over a vast array of clinical indications and range of patient specificity.

196 citations

Journal ArticleDOI
01 Jan 2019-Fuel
TL;DR: In this article, the effect of reaction temperatures and gas components (O2, SO2, H2O, SO3, and SO3) on Hg0 removal performance was investigated.

134 citations

Journal ArticleDOI
TL;DR: The CFLs and LEDs have higher resource depletion and toxicity potentials than the incandescent bulb due primarily to their high aluminum, copper, gold, lead, silver, and zinc, and conservation and sustainability policies should focus on the development of technologies that reduce the content of hazardous and rare metals in lighting products without compromising their performance and useful lifespan.
Abstract: Artificial lighting systems are transitioning from incandescent to compact fluorescent lamp (CFL) and light-emitting diode (LED) bulbs in response to the U.S. Energy Independence and Security Act and the EU Ecodesign Directive, which leads to energy savings and reduced greenhouse gas emissions. Although CFLs and LEDs are more energy-efficient than incandescent bulbs, they require more metal-containing components. There is uncertainty about the potential environmental impacts of these components and whether special provisions must be made for their disposal at the end of useful life. Therefore, the objective of this study is to analyze the resource depletion and toxicity potentials from the metals in incandescent, CFL, and LED bulbs to complement the development of sustainable energy policy. We assessed the potentials by examining whether the lighting products are to be categorized as hazardous waste under existing U.S. federal and California state regulations and by applying life cycle impact-based and hazard-based assessment methods (note that "life cycle impact-based method" does not mean a general life cycle assessment (LCA) but rather the elements in LCA used to quantify toxicity potentials). We discovered that both CFL and LED bulbs are categorized as hazardous, due to excessive levels of lead (Pb) leachability (132 and 44 mg/L, respectively; regulatory limit: 5) and the high contents of copper (111,000 and 31,600 mg/kg, respectively; limit: 2500), lead (3860 mg/kg for the CFL bulb; limit: 1000), and zinc (34,500 mg/kg for the CFL bulb; limit: 5000), while the incandescent bulb is not hazardous (note that the results for CFL bulbs excluded mercury vapor not captured during sample preparation). The CFLs and LEDs have higher resource depletion and toxicity potentials than the incandescent bulb due primarily to their high aluminum, copper, gold, lead, silver, and zinc. Comparing the bulbs on an equivalent quantity basis with respect to the expected lifetimes of the bulbs, the CFLs and LEDs have 3-26 and 2-3 times higher potential impacts than the incandescent bulb, respectively. We conclude that in addition to enhancing energy efficiency, conservation and sustainability policies should focus on the development of technologies that reduce the content of hazardous and rare metals in lighting products without compromising their performance and useful lifespan.

134 citations