scispace - formally typeset
Search or ask a question
Author

Natalie N. Nawarawong

Bio: Natalie N. Nawarawong is an academic researcher from University of Texas at Austin. The author has contributed to research in topics: Neurogenesis & Neural stem cell. The author has an hindex of 2, co-authored 4 publications receiving 9 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigated whether neurons born during reactive neurogenesis were incorporated into a newly learned Morris Water Maze (MWM) neuronal ensemble, and found that prior ethanol exposure had no significant impact on MWM-induced c-Fos expression.
Abstract: Abstinence after alcohol dependence leads to structural and functional recovery in many regions of the brain, especially the hippocampus. Significant increases in neural stem cell (NSC) proliferation and subsequent “reactive neurogenesis” coincides with structural recovery in hippocampal dentate gyrus (DG). However, whether these reactively born neurons are integrated appropriately into neural circuits remains unknown. Therefore, adult male rats were exposed to a binge model of alcohol dependence. On day 7 of abstinence, the peak of reactive NSC proliferation, rats were injected with bromodeoxyuridine (BrdU) to label dividing cells. After six weeks, rats underwent Morris Water Maze (MWM) training then were sacrificed ninety minutes after the final training session. Using fluorescent immunohistochemistry for c-Fos (neuronal activation), BrdU, and Neuronal Nuclei (NeuN), we investigated whether neurons born during reactive neurogenesis were incorporated into a newly learned MWM neuronal ensemble. Prior alcohol exposure increased the number of BrdU+ cells and newborn neurons (BrdU+/NeuN+ cells) in the DG versus controls. However, prior ethanol exposure had no significant impact on MWM-induced c-Fos expression. Despite increased BrdU+ neurons, no difference in the number of activated newborn neurons (BrdU+/c-Fos+/NeuN+) was observed. These data suggest that neurons born during alcohol-induced reactive neurogenesis are functionally integrated into hippocampal circuitry.

6 citations

Posted ContentDOI
20 Nov 2020-bioRxiv
TL;DR: The hypothesis that TBI and opioid exposure produce neuroadaptations that contribute to addiction liability is supported.
Abstract: Traumatic brain injury (TBI) and drug addiction are common comorbidities, but it is unknown if the neurological sequelae of TBI contribute to this relationship. We have previously reported elevated oxycodone seeking after drug self-administration in rats that received repeated blast TBI (rbTBI). TBI and exposure to drugs of abuse can each change structural and functional neuroimaging outcomes, but it is unknown if there are interactive effects of injury and drug exposure. To determine the effects of TBI and oxycodone exposure, we subjected rats to rbTBI and oxycodone self-administration and measured drug seeking and several neuroimaging measures. We found interactive effects of rbTBI and oxycodone on fractional anisotropy (FA) in the nucleus accumbens (NAc), and that FA in the medial prefrontal cortex (mPFC) was correlated with drug seeking. We also found an interactive effect of injury and drug on widespread functional connectivity and regional homogeneity of the BOLD response, and that interhemispheric functional connectivity in the infralimbic medial prefrontal cortex positively correlated with drug seeking. In conclusion, rbTBI and oxycodone self-administration had interactive effects on structural and functional MRI measures, and correlational effects were found between some of these measures and drug seeking. These data support the hypothesis that TBI and opioid exposure produce neuroadaptations that contribute to addiction liability.

4 citations

Book ChapterDOI
TL;DR: In this article, a review describes what little is known about adolescent-specific effects of alcohol on adult neurogenesis and its relationship to hippocampal integrity and the role of adolescent-born neurons.
Abstract: Alcohol is the most commonly used drug among adolescents. Their decreased sensitivity to self-regulating cues to stop drinking coincides with an enhanced vulnerability to negative outcomes of excessive drinking. In adolescents, the hippocampus is one brain region that is particularly susceptible to alcohol-induced neurodegeneration. While cell death is causal, alcohol effects on adult neurogenesis also impact hippocampal structure and function. This review describes what little is known about adolescent-specific effects of alcohol on adult neurogenesis and its relationship to hippocampal integrity. For example, alcohol intoxication inhibits neurogenesis persistently in adolescents but produces aberrant neurogenesis after alcohol dependence. Little is known, however, about the role of adolescent-born neurons in hippocampal integrity or the mechanisms of these effects. Understanding the role of neurogenesis in adolescent alcohol use and misuse is critical to our understanding of adolescent susceptibility to alcohol pathology and increased likelihood of developing alcohol problems in adulthood.

4 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used immunohistochemistry (IHC) to assess neural progenitor cell proliferation (BrdU and Ki67), the percentage of increased NPC activation (Sox2+/Ki67+), the number of immature neurons (NeuroD1), and ectopic dentate gyrus granule cells (Prox1).
Abstract: Hippocampal neurodegeneration is a consequence of excessive alcohol drinking in alcohol use disorders (AUDs), however, recent studies suggest that females may be more susceptible to alcohol-induced brain damage. Adult hippocampal neurogenesis is now well accepted to contribute to hippocampal integrity and is known to be affected by alcohol in humans as well as in animal models of AUDs. In male rats, a reactive increase in adult hippocampal neurogenesis has been observed during abstinence from alcohol dependence, a phenomenon that may underlie recovery of hippocampal structure and function. It is unknown whether reactive neurogenesis occurs in females. Therefore, adult female rats were exposed to a 4-day binge model of alcohol dependence followed by 7 or 14 days of abstinence. Immunohistochemistry (IHC) was used to assess neural progenitor cell (NPC) proliferation (BrdU and Ki67), the percentage of increased NPC activation (Sox2+/Ki67+), the number of immature neurons (NeuroD1), and ectopic dentate gyrus granule cells (Prox1). On day seven of abstinence, ethanol-treated females showed a significant increase in BrdU+ and Ki67+ cells in the subgranular zone of the dentate gyrus (SGZ), as well as greater activation of NPCs (Sox2+/Ki67+) into active cycling. At day 14 of abstinence, there was a significant increase in the number of immature neurons (NeuroD1+) though no evidence of ectopic neurogenesis according to either NeuroD1 or Prox1 immunoreactivity. Altogether, these data suggest that alcohol dependence produces similar reactive increases in NPC proliferation and adult neurogenesis. Thus, reactive, adult neurogenesis may be a means of recovery for the hippocampus after alcohol dependence in females.

4 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a review focused on observations concerning how methylmercury affects neurogenesis in the developing mammalian brain is presented, and information on models used to study developmental mercury toxicity, theories of pathogenesis, and treatments that could be used to reduce the toxic effects of mercury on developing neurons.
Abstract: The mammalian brain is formed from billions of cells that include a wide array of neuronal and glial subtypes. Neural progenitor cells give rise to the vast majority of these cells during embryonic, fetal, and early postnatal developmental periods. The process of embryonic neurogenesis includes proliferation, differentiation, migration, the programmed death of some newly formed cells, and the final integration of differentiated neurons into neural networks. Adult neurogenesis also occurs in the mammalian brain, but adult neurogenesis is beyond the scope of this review. Developing embryonic neurons are particularly susceptible to neurotoxicants and especially mercury toxicity. This review focused on observations concerning how mercury, and in particular, methylmercury, affects neurogenesis in the developing mammalian brain. We summarized information on models used to study developmental mercury toxicity, theories of pathogenesis, and treatments that could be used to reduce the toxic effects of mercury on developing neurons.

14 citations

01 Jan 2012
TL;DR: In this paper, a high-resolution (1 mm3 voxels) five material model of the human head was created by segmentation of color cryosections from the VISible Human Female data set.
Abstract: The objective of this modeling and simulation study was to establish the role of stress wave interactions in the genesis of traumatic brain injury (TBI) from exposure to explosive blast. A high resolution (1 mm3 voxels) five material model of the human head was created by segmentation of color cryosections from the Visible Human Female data set. Tissue material properties were assigned from literature values. The model was inserted into the shock physics wave code, CTH, and subjected to a simulated blast wave of 1.3 MPa (13 bars) peak pressure from anterior, posterior, and lateral directions. Three-dimensional plots of maximum pressure, volumetric tension, and deviatoric (shear) stress demonstrated significant differences related to the incident blast geometry. In particular, the calculations revealed focal brain regions of elevated pressure and deviatoric stress within the first 2 ms of blast exposure. Calculated maximum levels of 15 KPa deviatoric, 3.3 MPa pressure, and 0.8 MPa volumetric tension were observed before the onset of significant head accelerations. Over a 2 ms time course, the head model moved only 1 mm in response to the blast loading. Doubling the blast strength changed the resulting intracranial stress magnitudes but not their distribution. We conclude that stress localization, due to early-time wave interactions, may contribute to the development of multifocal axonal injury underlying TBI. We propose that a contribution to traumatic brain injury from blast exposure, and most likely blunt impact, can occur on a time scale shorter than previous model predictions and before the onset of linear or rotational accelerations traditionally associated with the development of TBI.

14 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of key clinical and preclinical studies and list plausible mechanisms by which TBI could increase risky substance use, including damage-associated neuroplasticity, chronic changes in neuroimmune signaling, and TBI-associated alterations in brain networks.

11 citations

Journal ArticleDOI
TL;DR: A review of the literature surrounding the effects of alcohol on microglia in models of adolescent alcohol misuse can be found in this paper, where the authors attempt to disentangle what is known about micro-glia from other neuroimmune effectors.
Abstract: Alcohol is one of the most widely used recreational substances worldwide, with drinking frequently initiated during adolescence. The developmental state of the adolescent brain makes it vulnerable to initiating alcohol use, often in high doses, and particularly susceptible to alcohol-induced brain changes. Microglia, the brain parenchymal macrophages, have been implicated in mediating some of these effects, though the role that these cells play in the progression from alcohol drinking to dependence remains unclear. Microglia are uniquely positioned to sense and respond to central nervous system insult, and are now understood to exhibit innate immune memory, or "priming," altering their future functional responses based on prior exposures. In alcohol use disorders (AUDs), the role of microglia is debated. Whereas microglial activation can be pathogenic, contributing to neuroinflammation, tissue damage, and behavioral changes, or protective, it can also engage protective functions, providing support and mediating the resolution of damage. Understanding the role of microglia in adolescent AUDs is complicated by the fact that microglia are thought to be involved in developmental processes such as synaptic refinement and myelination, which underlie the functional maturation of multiple brain systems in adolescence. Thus, the role microglia play in the impact of alcohol use in adolescence is likely multifaceted. Long-term sequelae may be due to a failure to recover from EtOH-induced tissue damage, altered neurodevelopmental trajectories, and/or persistent changes to microglial responsivity and function. Here, we review critically the literature surrounding the effects of alcohol on microglia in models of adolescent alcohol misuse. We attempt to disentangle what is known about microglia from other neuroimmune effectors, to which we apply recent discoveries on the role of microglia in development and plasticity. Considered altogether, these studies challenge assumptions that proinflammatory microglia drive addiction. Alcohol priming microglia and thereby perturbing their homeostatic roles in neurodevelopment, especially during critical periods of plasticity such as adolescence, may have more serious implications for the neuropathogenesis of AUDs in adolescents.

7 citations