scispace - formally typeset
Search or ask a question
Author

Nataliya Sharopova

Bio: Nataliya Sharopova is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Expression quantitative trait loci & Genetics. The author has an hindex of 4, co-authored 5 publications receiving 5878 citations.

Papers
More filters
Journal ArticleDOI
John T. Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando U. Garcia1, Nancy Young2, Barbara A. Foster3, Mike Moser3, Ellen Karasik3, Bryan Gillard3, Kimberley Ramsey3, Susan L. Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura A. Siminoff4, Heather M. Traino4, Maghboeba Mosavel4, Laura Barker4, Scott D. Jewell5, Daniel C. Rohrer5, Dan Maxim5, Dana Filkins5, Philip Harbach5, Eddie Cortadillo5, Bree Berghuis5, Lisa Turner5, Eric Hudson5, Kristin Feenstra5, Leslie H. Sobin6, James A. Robb6, Phillip Branton, Greg E. Korzeniewski6, Charles Shive6, David Tabor6, Liqun Qi6, Kevin Groch6, Sreenath Nampally6, Steve Buia6, Angela Zimmerman6, Anna M. Smith6, Robin Burges6, Karna Robinson6, Kim Valentino6, Deborah Bradbury6, Mark Cosentino6, Norma Diaz-Mayoral6, Mary Kennedy6, Theresa Engel6, Penelope Williams6, Kenyon Erickson, Kristin G. Ardlie7, Wendy Winckler7, Gad Getz8, Gad Getz7, David S. DeLuca7, MacArthur Daniel MacArthur7, MacArthur Daniel MacArthur8, Manolis Kellis7, Alexander Thomson7, Taylor Young7, Ellen Gelfand7, Molly Donovan7, Yan Meng7, George B. Grant7, Deborah C. Mash9, Yvonne Marcus9, Margaret J. Basile9, Jun Liu8, Jun Zhu10, Zhidong Tu10, Nancy J. Cox11, Dan L. Nicolae11, Eric R. Gamazon11, Hae Kyung Im11, Anuar Konkashbaev11, Jonathan K. Pritchard11, Jonathan K. Pritchard12, Matthew Stevens11, Timothée Flutre11, Xiaoquan Wen11, Emmanouil T. Dermitzakis13, Tuuli Lappalainen13, Roderic Guigó, Jean Monlong, Michael Sammeth, Daphne Koller14, Alexis Battle14, Sara Mostafavi14, Mark I. McCarthy15, Manual Rivas15, Julian Maller15, Ivan Rusyn16, Andrew B. Nobel16, Fred A. Wright16, Andrey A. Shabalin16, Mike Feolo17, Nataliya Sharopova17, Anne Sturcke17, Justin Paschal17, James M. Anderson17, Elizabeth L. Wilder17, Leslie Derr17, Eric D. Green17, Jeffery P. Struewing17, Gary F. Temple17, Simona Volpi17, Joy T. Boyer17, Elizabeth J. Thomson17, Mark S. Guyer17, Cathy Ng17, Assya Abdallah17, Deborah Colantuoni17, Thomas R. Insel17, Susan E. Koester17, Roger Little17, Patrick Bender17, Thomas Lehner17, Yin Yao17, Carolyn C. Compton17, Jimmie B. Vaught17, Sherilyn Sawyer17, Nicole C. Lockhart17, Joanne P. Demchok17, Helen F. Moore17 
TL;DR: The Genotype-Tissue Expression (GTEx) project is described, which will establish a resource database and associated tissue bank for the scientific community to study the relationship between genetic variation and gene expression in human tissues.
Abstract: Genome-wide association studies have identified thousands of loci for common diseases, but, for the majority of these, the mechanisms underlying disease susceptibility remain unknown. Most associated variants are not correlated with protein-coding changes, suggesting that polymorphisms in regulatory regions probably contribute to many disease phenotypes. Here we describe the Genotype-Tissue Expression (GTEx) project, which will establish a resource database and associated tissue bank for the scientific community to study the relationship between genetic variation and gene expression in human tissues.

6,545 citations

Journal ArticleDOI
TL;DR: Clonal mosaicism for large chromosomal anomalies (duplications, deletions and uniparental disomy) is detected using SNP microarray data from over 50,000 subjects recruited for genome-wide association studies to identify common deleted regions with genes previously associated with hematological cancers.
Abstract: We detected clonal mosaicism for large chromosomal anomalies (duplications, deletions and uniparental disomy) using SNP microarray data from over 50,000 subjects recruited for genome-wide association studies. This detection method requires a relatively high frequency of cells with the same abnormal karyotype (>5-10%; presumably of clonal origin) in the presence of normal cells. The frequency of detectable clonal mosaicism in peripheral blood is low (<0.5%) from birth until 50 years of age, after which it rapidly rises to 2-3% in the elderly. Many of the mosaic anomalies are characteristic of those found in hematological cancers and identify common deleted regions with genes previously associated with these cancers. Although only 3% of subjects with detectable clonal mosaicism had any record of hematological cancer before DNA sampling, those without a previous diagnosis have an estimated tenfold higher risk of a subsequent hematological cancer (95% confidence interval = 6-18).

519 citations

Journal ArticleDOI
TL;DR: The Database of Genotypes and Phenotypes (dbGap) is a National Institutes of Health-sponsored repository charged to archive, curate and distribute information produced by studies investigating the interaction of genotype and phenotype.
Abstract: The Database of Genotypes and Phenotypes (dbGap, http://www.ncbi.nlm.nih.gov/gap) is a National Institutes of Health-sponsored repository charged to archive, curate and distribute information produced by studies investigating the interaction of genotype and phenotype. Information in dbGaP is organized as a hierarchical structure and includes the accessioned objects, phenotypes (as variables and datasets), various molecular assay data (SNP and Expression Array data, Sequence and Epigenomic marks), analyses and documents. Publicly accessible metadata about submitted studies, summary level data, and documents related to studies can be accessed freely on the dbGaP website. Individual-level data are accessible via Controlled Access application to scientists across the globe.

425 citations

Journal ArticleDOI
TL;DR: An eQTL investigation of microarray-based gene and exon expression levels in whole blood in a cohort of 5257 individuals is conducted, exceeding the single cohort size of previous studies by more than a factor of 2.5.
Abstract: Identification of single nucleotide polymorphisms (SNPs) associated with gene expression levels, known as expression quantitative trait loci (eQTLs), may improve understanding of the functional role of phenotype-associated SNPs in genome-wide association studies (GWAS). The small sample sizes of some previous eQTL studies have limited their statistical power. We conducted an eQTL investigation of microarray-based gene and exon expression levels in whole blood in a cohort of 5257 individuals, exceeding the single cohort size of previous studies by more than a factor of 2. We detected over 19,000 independent lead cis-eQTLs and over 6000 independent lead trans-eQTLs, targeting over 10,000 gene targets (eGenes), with a false discovery rate (FDR) < 5%. Of previously published significant GWAS SNPs, 48% are identified to be significant eQTLs in our study. Some trans-eQTLs point toward novel mechanistic explanations for the association of the SNP with the GWAS-related phenotype. We also identify 59 distinct blocks or clusters of trans-eQTLs, each targeting the expression of sets of six to 229 distinct trans-eGenes. Ten of these sets of target genes are significantly enriched for microRNA targets (FDR < 5%). Many of these clusters are associated in GWAS with multiple phenotypes. These findings provide insights into the molecular regulatory patterns involved in human physiology and pathophysiology. We illustrate the value of our eQTL database in the context of a recent GWAS meta-analysis of coronary artery disease and provide a list of targeted eGenes for 21 of 58 GWAS loci.

149 citations

John T. Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando U. Garcia, Nancy Young, Barbara A. Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Susan L. Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura A. Siminoff, Heather M. Traino, Maghboeba Mosavel, Laura Barker, Scott D. Jewell, Daniel C. Rohrer, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Eric Hudson, Kristin Feenstra, Leslie H. Sobin, James A. Robb, Phillip Branton, Greg E. Korzeniewski, Charles Shive, David Tabor, Liqun Qi, Kevin Groch, Sreenath Nampally, Steve Buia, Angela Zimmerman, Anna M. Smith, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, Mark Cosentino, Norma Diaz-Mayoral, Mary Kennedy, Theresa Engel, Penelope Williams, Kenyon Erickson, Kristin G. Ardlie, Wendy Winckler, Gad Getz, David S. DeLuca, Daniel G. MacArthur, Manolis Kellis, Alexander Thomson, Taylor Young, Ellen Gelfand, Molly Donovan, Yan Meng, George B. Grant, Deborah C. Mash, Yvonne Marcus, Margaret J. Basile, Jun Liu, Jun Zhu, Zhidong Tu, Nancy J. Cox, Dan L. Nicolae, Eric R. Gamazon, Hae Kyung Im, Anuar Konkashbaev, Jonathan K. Pritchard, Matthew Stevens, Timothée Flutre, Xiaoquan Wen, Emmanouil T. Dermitzakis, Tuuli Lappalainen, Roderic Guigó, Jean Monlong, Michael Sammeth, Daphne Koller, Alexis Battle, Sara Mostafavi, Mark I. McCarthy, Manual Rivas, Julian Maller, Ivan Rusyn, Andrew B. Nobel, Fred A. Wright, Andrey A. Shabalin, Mike Feolo, Nataliya Sharopova, Anne Sturcke, Justin Paschal, James M. Anderson, Elizabeth L. Wilder, Leslie Derr, Eric D. Green, Jeffery P. Struewing, Gary F. Temple, Simona Volpi, Joy T. Boyer, Elizabeth J. Thomson, Mark S. Guyer, Cathy Ng, Assya Abdallah, Deborah Colantuoni, Thomas R. Insel, Susan E. Koester, A. Roger Little, Patrick Bender, Thomas Lehner, Yin Yao, Carolyn C. Compton, Jimmie B. Vaught, Sherilyn Sawyer, Nicole C. Lockhart, Joanne P. Demchok, Helen F. Moore 
01 May 2013
TL;DR: In this article, the authors proposed a new method for the detection of cancer using a set of genes extracted from the human brain, which they called LSTM-CRF.
Abstract: National Institutes of Health (U.S.) (US NIH to the Broad Institute of Harvard and MIT, R01 DA006227-17)

2 citations


Cited by
More filters
Journal ArticleDOI
06 Jun 2013-Cell
TL;DR: Nine tentative hallmarks that represent common denominators of aging in different organisms are enumerated, with special emphasis on mammalian aging, to identify pharmaceutical targets to improve human health during aging, with minimal side effects.

9,980 citations

Journal ArticleDOI
Zefang Tang1, Chenwei Li1, Boxi Kang1, Ge Gao1, Cheng Li1, Zemin Zhang 
TL;DR: GEPIA (Gene Expression Profiling Interactive Analysis) fills in the gap between cancer genomics big data and the delivery of integrated information to end users, thus helping unleash the value of the current data resources.
Abstract: Tremendous amount of RNA sequencing data have been produced by large consortium projects such as TCGA and GTEx, creating new opportunities for data mining and deeper understanding of gene functions. While certain existing web servers are valuable and widely used, many expression analysis functions needed by experimental biologists are still not adequately addressed by these tools. We introduce GEPIA (Gene Expression Profiling Interactive Analysis), a web-based tool to deliver fast and customizable functionalities based on TCGA and GTEx data. GEPIA provides key interactive and customizable functions including differential expression analysis, profiling plotting, correlation analysis, patient survival analysis, similar gene detection and dimensionality reduction analysis. The comprehensive expression analyses with simple clicking through GEPIA greatly facilitate data mining in wide research areas, scientific discussion and the therapeutic discovery process. GEPIA fills in the gap between cancer genomics big data and the delivery of integrated information to end users, thus helping unleash the value of the current data resources. GEPIA is available at http://gepia.cancer-pku.cn/.

5,980 citations

Journal ArticleDOI
TL;DR: This work presents a method named HISAT2 (hierarchical indexing for spliced alignment of transcripts 2) that can align both DNA and RNA sequences using a graph Ferragina Manzini index, and uses it to represent and search an expanded model of the human reference genome.
Abstract: The human reference genome represents only a small number of individuals, which limits its usefulness for genotyping. We present a method named HISAT2 (hierarchical indexing for spliced alignment of transcripts 2) that can align both DNA and RNA sequences using a graph Ferragina Manzini index. We use HISAT2 to represent and search an expanded model of the human reference genome in which over 14.5 million genomic variants in combination with haplotypes are incorporated into the data structure used for searching and alignment. We benchmark HISAT2 using simulated and real datasets to demonstrate that our strategy of representing a population of genomes, together with a fast, memory-efficient search algorithm, provides more detailed and accurate variant analyses than other methods. We apply HISAT2 for HLA typing and DNA fingerprinting; both applications form part of the HISAT-genotype software that enables analysis of haplotype-resolved genes or genomic regions. HISAT-genotype outperforms other computational methods and matches or exceeds the performance of laboratory-based assays. A graph-based genome indexing scheme enables variant-aware alignment of sequences with very low memory requirements.

4,855 citations

Journal ArticleDOI
Kristin G. Ardlie, David S. DeLuca, Ayellet V. Segrè, Timothy J. Sullivan, Taylor Young, Ellen Gelfand, Casandra A. Trowbridge, Julian Maller, Taru Tukiainen, Monkol Lek, Lucas D. Ward, Pouya Kheradpour, Benjamin Iriarte, Yan Meng, Cameron D. Palmer, Tõnu Esko, Wendy Winckler, Joel N. Hirschhorn, Manolis Kellis, Daniel G. MacArthur, Gad Getz, Andrey A. Shabalin, Gen Li, Yi-Hui Zhou, Andrew B. Nobel, Ivan Rusyn, Fred A. Wright, Tuuli Lappalainen, Pedro G. Ferreira, Halit Ongen, Manuel A. Rivas, Alexis Battle, Sara Mostafavi, Jean Monlong, Michael Sammeth, Marta Melé, Ferran Reverter, Jakob M. Goldmann, Daphne Koller, Roderic Guigó, Mark I. McCarthy, Emmanouil T. Dermitzakis, Eric R. Gamazon, Hae Kyung Im, Anuar Konkashbaev, Dan L. Nicolae, Nancy J. Cox, Timothée Flutre, Xiaoquan Wen, Matthew Stephens, Jonathan K. Pritchard, Zhidong Tu, Bin Zhang, Tao Huang, Quan Long, Luan Lin, Jialiang Yang, Jun Zhu, Jun Liu, Amanda Brown, Bernadette Mestichelli, Denee Tidwell, Edmund Lo, Mike Salvatore, Saboor Shad, Jeffrey A. Thomas, John T. Lonsdale, Michael T. Moser, Bryan Gillard, Ellen Karasik, Kimberly Ramsey, Christopher Choi, Barbara A. Foster, John Syron, Johnell Fleming, Harold Magazine, Rick Hasz, Gary Walters, Jason Bridge, Mark Miklos, Susan L. Sullivan, Laura Barker, Heather M. Traino, Maghboeba Mosavel, Laura A. Siminoff, Dana R. Valley, Daniel C. Rohrer, Scott D. Jewell, Philip A. Branton, Leslie H. Sobin, Mary Barcus, Liqun Qi, Jeffrey McLean, Pushpa Hariharan, Ki Sung Um, Shenpei Wu, David Tabor, Charles Shive, Anna M. Smith, Stephen A. Buia, Anita H. Undale, Karna Robinson, Nancy Roche, Kimberly M. Valentino, Angela Britton, Robin Burges, Debra Bradbury, Kenneth W. Hambright, John Seleski, Greg E. Korzeniewski, Kenyon Erickson, Yvonne Marcus, Jorge Tejada, Mehran Taherian, Chunrong Lu, Margaret J. Basile, Deborah C. Mash, Simona Volpi, Jeffery P. Struewing, Gary F. Temple, Joy T. Boyer, Deborah Colantuoni, Roger Little, Susan E. Koester, Latarsha J. Carithers, Helen M. Moore, Ping Guan, Carolyn C. Compton, Sherilyn Sawyer, Joanne P. Demchok, Jimmie B. Vaught, Chana A. Rabiner, Nicole C. Lockhart 
08 May 2015-Science
TL;DR: The landscape of gene expression across tissues is described, thousands of tissue-specific and shared regulatory expression quantitative trait loci (eQTL) variants are cataloged, complex network relationships are described, and signals from genome-wide association studies explained by eQTLs are identified.
Abstract: Understanding the functional consequences of genetic variation, and how it affects complex human disease and quantitative traits, remains a critical challenge for biomedicine. We present an analysi...

4,418 citations

Journal ArticleDOI
TL;DR: The latest improvements made to the frameworks which enhance the interconnectivity between public EMBL-EBI resources and ultimately enhance biological data discoverability, accessibility, interoperability and reusability are described.
Abstract: The EMBL-EBI provides free access to popular bioinformatics sequence analysis applications as well as to a full-featured text search engine with powerful cross-referencing and data retrieval capabilities. Access to these services is provided via user-friendly web interfaces and via established RESTful and SOAP Web Services APIs (https://www.ebi.ac.uk/seqdb/confluence/display/JDSAT/EMBL-EBI+Web+Services+APIs+-+Data+Retrieval). Both systems have been developed with the same core principles that allow them to integrate an ever-increasing volume of biological data, making them an integral part of many popular data resources provided at the EMBL-EBI. Here, we describe the latest improvements made to the frameworks which enhance the interconnectivity between public EMBL-EBI resources and ultimately enhance biological data discoverability, accessibility, interoperability and reusability.

3,529 citations