scispace - formally typeset
Search or ask a question
Author

Natasha M. Franklin

Bio: Natasha M. Franklin is an academic researcher from McMaster University. The author has contributed to research in topics: Copper toxicity & Biotic Ligand Model. The author has an hindex of 18, co-authored 23 publications receiving 3100 citations. Previous affiliations of Natasha M. Franklin include Commonwealth Scientific and Industrial Research Organisation & University of Technology, Sydney.

Papers
More filters
Journal ArticleDOI
TL;DR: Care needs to be taken in toxicity testing in ascribing toxicity to nanoparticles per se when the effects may be related, at least in part, to simple solubility, as this study has shown.
Abstract: Metal oxide nanoparticles are finding increasing application in various commercial products, leading to concerns for their environmental fate and potential toxicity. It is generally assumed that nanoparticles will persist as small particles in aquatic systems and that their bioavailability could be significantly greater than that of larger particles. The current study using nanoparticulate ZnO (ca. 30 nm) has shown that this is not always so. Particle characterization using transmission electron microscopy and dynamic light scattering techniques showed that particle aggregation is significant in a freshwater system, resulting in flocs ranging from several hundred nanometers to several microns. Chemical investigations using equilibrium dialysis demonstrated rapid dissolution of ZnO nanoparticles in a freshwater medium (pH 7.6), with a saturation solubility in the milligram per liter range, similar to that of bulk ZnO. Toxicity experiments using the freshwater alga Pseudokirchneriella subcapitata revealed c...

1,221 citations

Journal ArticleDOI
TL;DR: The results suggest that all three metals share some common uptake and transport sites on Chlorella cells and that copper out competes both cadmium and zinc for cell binding.
Abstract: The individual and combined effects of copper, cadmium, and zinc on the cell division rate of the tropical freshwater alga Chlorella sp. were determined over 48 to 72 h. Metal mixtures were prepared based on multiples of their single-metal median effective concentration (EC50) values, i.e., toxic units (TU) using a triangular mixture design with five toxicant levels (0, 0.75, 1.0, 1.25, and 1.5 TU). Single-metal EC50 values after a 72-h exposure were 0.11, 0.85, and 1.4 microM for copper, cadmium, and zinc, respectively. Significant interactions were observed for all metal combinations after 48 and 72 h. An equitoxic mixture of Cu + Cd was more than concentration additive (synergistic) to the growth of Chlorella sp., while combinations of Cu + Zn, Cd + Zn, and Cu + Cd + Zn were all less than concentration additive or were antagonistic. To determine the effect of each metal on the uptake of the other, extracellular (membrane-bound) and intracellular metal concentrations, both alone and in mixtures, were compared. The increased growth inhibition observed for mixtures of Cu + Cd was due to higher concentrations of cell-bound and intracellular copper in the presence of cadmium compared with copper alone (i.e., cadmium-enhanced copper uptake). In contrast, both extra- and intracellular cadmium concentrations were reduced in the presence of copper. In mixtures of Cu + Zn, copper also inhibited the binding and cellular uptake of zinc, which resulted in decreased toxicity. Zinc had no appreciable effect on the uptake of copper by Chlorella sp. Our results suggest that all three metals share some common uptake and transport sites on Chlorella cells and that copper out competes both cadmium and zinc for cell binding. Determination of metal cell distribution coefficients (K(d)) confirmed that K(d) values for cadmium and zinc in single-metal exposures decreased in the presence of copper.

203 citations

Journal ArticleDOI
TL;DR: Findings suggest that standard static laboratory bioassays using 104 to 105 algal cells/ml may seriously underestimate metal toxicity in natural waters.
Abstract: Algal toxicity tests based on growth inhibition over 72 h have been extensively used to assess the toxicity of contaminants in natural waters. However, these laboratory tests use high cell densities compared to those found in aquatic systems in order to obtain a measurable algal response. The high cell densities and test duration can result in changes in chemical speciation, bioavailability, and toxicity of contaminants throughout the test. With the recent application of flow cytometry to ecotoxicology, it is now possible to use lower initial cell densities to minimize chemical speciation changes. The speciation and toxicity of copper in static bioassays with the tropical freshwater alga Chlorella sp. and the temperate species Selenastrum capricornutum (Pseudokirchneriella subcapitata) were investigated at a range of initial cell densities (10(2)-10(5) cells/ml). Copper toxicity decreased with increasing initial cell density. Copper concentrations required to inhibit growth (cell division) rate by 50% (72-h median effective concentration [EC50]) increased from 4.6 to 16 microg/L for Chlorella sp. and from 6.6 to 17 microg/L for S. capricornutum as the initial cell density increased from 10(2) to 10(5) cells/ml. Measurements of anodic stripping voltammetry-labile, extracellular, and intracellular copper confirmed that at higher initial cell densities, less copper was bound to the cells, resulting in less copper uptake and lower toxicity. Chemical measurements indicated that reduced copper toxicity was due primarily to depletion of dissolved copper in solution, with solution speciation changes due to algal exudates and pH playing a minor role. These findings suggest that standard static laboratory bioassays using 10(4) to 10(5) algal cells/ml may seriously underestimate metal toxicity in natural waters.

190 citations

Journal ArticleDOI
TL;DR: Results demonstrate that flow cytometry is a useful technique for toxicity testing with microalgae and provide additional information regarding the general mode of action of copper (II) to algal species.
Abstract: Copper toxicity to the freshwater algae Selenastrum capricornutum and Chlorella sp. and the marine algae Phaeodactylum tricornutum and Dunaliella tertiolecta was investigated using different parameters measured by flow cytometry: cell division rate inhibition, chlorophyll a fluorescence, cell size (i.e., light-scattering), and enzyme activity. These parameters were assessed regarding their usefulness as alternative endpoints for acute (1-24 h) and chronic (48-72 h) toxicity tests. At copper concentrations of 10 micrograms/L or less, significant inhibition (50%) of the cell division rate was observed after 48- and 72-h exposures for Chlorella sp., S. capricornutum, and P. tricornutum. Bioassays based on increases in algal cell size were also sensitive for Chlorella sp. and P. tricornutum. Copper caused both chlorophyll a fluorescence stimulation (48-h EC50 of 10 +/- 1 micrograms Cu/L for P. tricornutum) and inhibition (48-h EC50 of 14 +/- 6 micrograms Cu/L for S. capricornutum). For acute toxicity over short exposure periods, esterase activity in S. capricornutum using fluorescein diacetate offered a rapid alternative (3-h EC50 of 90 +/- 40 micrograms Cu/L) to growth inhibition tests for monitoring copper toxicity in mine-impacted waters. For all the effect parameters measured, D. tertiolecta was tolerant to copper at concentrations up to its solubility limit in seawater. These results demonstrate that flow cytometry is a useful technique for toxicity testing with microalgae and provide additional information regarding the general mode of action of copper (II) to algal species.

183 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review covered ZnO-NPs antibacterial activity including testing methods, impact of UV illumination,ZnO particle properties (size, concentration, morphology, and defects), particle surface modification, and minimum inhibitory concentration.
Abstract: Antibacterial activity of zinc oxide nanoparticles (ZnO-NPs) has received significant interest worldwide particularly by the implementation of nanotechnology to synthesize particles in the nanometer region. Many microorganisms exist in the range from hundreds of nanometers to tens of micrometers. ZnO-NPs exhibit attractive antibacterial properties due to increased specific surface area as the reduced particle size leading to enhanced particle surface reactivity. ZnO is a bio-safe material that possesses photo-oxidizing and photocatalysis impacts on chemical and biological species. This review covered ZnO-NPs antibacterial activity including testing methods, impact of UV illumination, ZnO particle properties (size, concentration, morphology, and defects), particle surface modification, and minimum inhibitory concentration. Particular emphasize was given to bactericidal and bacteriostatic mechanisms with focus on generation of reactive oxygen species (ROS) including hydrogen peroxide (H2O2), OH− (hydroxyl radicals), and O2 −2 (peroxide). ROS has been a major factor for several mechanisms including cell wall damage due to ZnO-localized interaction, enhanced membrane permeability, internalization of NPs due to loss of proton motive force and uptake of toxic dissolved zinc ions. These have led to mitochondria weakness, intracellular outflow, and release in gene expression of oxidative stress which caused eventual cell growth inhibition and cell death. In some cases, enhanced antibacterial activity can be attributed to surface defects on ZnO abrasive surface texture. One functional application of the ZnO antibacterial bioactivity was discussed in food packaging industry where ZnO-NPs are used as an antibacterial agent toward foodborne diseases. Proper incorporation of ZnO-NPs into packaging materials can cause interaction with foodborne pathogens, thereby releasing NPs onto food surface where they come in contact with bad bacteria and cause the bacterial death and/or inhibition.

2,627 citations

Journal ArticleDOI
TL;DR: This review critiques existing nanomaterial research in freshwater, marine, and soil environments and illustrates the paucity of existing research and demonstrates the need for additional research.
Abstract: The recent advances in nanotechnology and the corresponding increase in the use of nanomaterials in products in every sector of society have resulted in uncertainties regarding environmental impacts. The objectives of this review are to introduce the key aspects pertaining to nanomaterials in the environment and to discuss what is known concerning their fate, behavior, disposition, and toxicity, with a particular focus on those that make up manufactured nanomaterials. This review critiques existing nanomaterial research in freshwater, marine, and soil environments. It illustrates the paucity of existing research and demonstrates the need for additional research. Environmental scientists are encouraged to base this research on existing studies on colloidal behavior and toxicology. The need for standard reference and testing materials as well as methodology for suspension preparation and testing is also discussed.

2,566 citations

Journal ArticleDOI
01 Oct 2008-ACS Nano
TL;DR: The results demonstrate that metal oxide nanoparticles induce a range of biological responses that vary from cytotoxic to cytoprotective and can only be properly understood by using a tiered test strategy such as that developed for oxidative stress and adapted to study other aspects of nanoparticle toxicity.
Abstract: Nanomaterials (NM) exhibit novel physicochemical properties that determine their interaction with biological substrates and processes. Three metal oxide nanoparticles that are currently being produced in high tonnage, TiO2, ZnO, and CeO2, were synthesized by flame spray pyrolysis process and compared in a mechanistic study to elucidate the physicochemical characteristics that determine cellular uptake, subcellular localization, and toxic effects based on a test paradigm that was originally developed for oxidative stress and cytotoxicity in RAW 264.7 and BEAS-2B cell lines. ZnO induced toxicity in both cells, leading to the generation of reactive oxygen species (ROS), oxidant injury, excitation of inflammation, and cell death. Using ICP-MS and fluorescent-labeled ZnO, it is found that ZnO dissolution could happen in culture medium and endosomes. Nondissolved ZnO nanoparticles enter caveolae in BEAS-2B but enter lysosomes in RAW 264.7 cells in which smaller particle remnants dissolve. In contrast, fluoresce...

2,206 citations

Journal ArticleDOI
TL;DR: The antimicrobial mechanisms of several nanoparticles are reviewed, their merits, limitations and applicability for water disinfection and biofouling control are discussed, and research needs to utilize novel nanomaterials for water treatment applications are highlighted.

2,108 citations

Journal ArticleDOI
TL;DR: It is argued that evidence for novel size-dependent properties alone, rather than particle size, should be the primary criterion in any definition of nanoparticles when making decisions about their regulation for environmental, health and safety reasons.
Abstract: The regulation of engineered nanoparticles requires a widely agreed definition of such particles. Nanoparticles are routinely defined as particles with sizes between about 1 and 100 nm that show properties that are not found in bulk samples of the same material. Here we argue that evidence for novel size-dependent properties alone, rather than particle size, should be the primary criterion in any definition of nanoparticles when making decisions about their regulation for environmental, health and safety reasons. We review the size-dependent properties of a variety of inorganic nanoparticles and find that particles larger than about 30 nm do not in general show properties that would require regulatory scrutiny beyond that required for their bulk counterparts.

1,656 citations