scispace - formally typeset
Search or ask a question
Author

Nathalie Bontoux

Bio: Nathalie Bontoux is an academic researcher from Centre national de la recherche scientifique. The author has contributed to research in topics: Drop (liquid) & Two-phase flow. The author has an hindex of 3, co-authored 4 publications receiving 2310 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a flow-focusing geometry is integrated into a microfluidic device and used to study drop formation in liquid-liquid systems, where both monodisperse and polydisperse emulsions can be produced.
Abstract: A flow-focusing geometry is integrated into a microfluidic device and used to study drop formation in liquid–liquid systems. A phase diagram illustrating the drop size as a function of flow rates and flow rate ratios of the two liquids includes one regime where drop size is comparable to orifice width and a second regime where drop size is dictated by the diameter of a thin “focused” thread, so drops much smaller than the orifice are formed. Both monodisperse and polydisperse emulsions can be produced.

2,264 citations

Journal ArticleDOI
TL;DR: It is demonstrated that, using the microfluidic protocol, 74% of the genes expressed in mouse brain were detected, while only 4% were found with the conventional approach, demonstrating the outstanding sensitivity of the micro fluidic method.
Abstract: To correlate gene expression profiles to fundamental biological processes such as cell growth, differentiation and migration, it is essential to work at the single cell level. Gene expression analysis always starts with the relatively low efficient reverse transcription (RT) of RNA into complementary DNA (cDNA), an essential step as unprocessed RNAs will not be analysed further. In this paper, we present a novel method for RT that uses microfluidics to manipulate nanolitre volumes. We compare our method to conventional protocols performed in microlitre volumes. More specifically, reverse transcription was performed either in a polydimethylsiloxane (PDMS) rotary mixer or in a tube, using a single cell amount of mouse brain RNA (10 pg), and was followed by a template-switching PCR (TS-PCR) amplification step. We demonstrate that, using the microfluidic protocol, 74% of the genes expressed in mouse brain were detected, while only 4% were found with the conventional approach. We next profiled single neuronal progenitors. Using our microfluidic approach, i.e. performing cell capture, lysis and reverse transcription on-chip followed by TS-PCR amplification in tube, a mean of 5000 genes were detected in each neuron, which corresponds to the expected number of genes expressed in a single cell. This demonstrates the outstanding sensitivity of the microfluidic method.

117 citations

Journal ArticleDOI
TL;DR: Hydrodynamic dispersion in shallow microchannels with almost parabolic cross-sectional shapes and with heights much less than their widths is studied experimentally and it is demonstrated that the dispersion depends on the width rather than the height of the channel.
Abstract: Hydrodynamic dispersion in shallow microchannels with almost parabolic cross-sectional shapes and with heights much less than their widths is studied experimentally. Both long serpentine channels and rotary mixers are used. The experimental results demonstrate that the dispersion depends on the width rather than the height of the channel. The results are in quantitative agreement with a recently proposed theory of dispersion in shallow channels.

52 citations


Cited by
More filters
Journal ArticleDOI
27 Jul 2006-Nature
TL;DR: The manipulation of fluids in channels with dimensions of tens of micrometres — microfluidics — has emerged as a distinct new field that has the potential to influence subject areas from chemical synthesis and biological analysis to optics and information technology.
Abstract: The manipulation of fluids in channels with dimensions of tens of micrometres--microfluidics--has emerged as a distinct new field. Microfluidics has the potential to influence subject areas from chemical synthesis and biological analysis to optics and information technology. But the field is still at an early stage of development. Even as the basic science and technological demonstrations develop, other problems must be addressed: choosing and focusing on initial applications, and developing strategies to complete the cycle of development, including commercialization. The solutions to these problems will require imagination and ingenuity.

8,260 citations

Journal ArticleDOI
TL;DR: A review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena as mentioned in this paper.
Abstract: Microfabricated integrated circuits revolutionized computation by vastly reducing the space, labor, and time required for calculations. Microfluidic systems hold similar promise for the large-scale automation of chemistry and biology, suggesting the possibility of numerous experiments performed rapidly and in parallel, while consuming little reagent. While it is too early to tell whether such a vision will be realized, significant progress has been achieved, and various applications of significant scientific and practical interest have been developed. Here a review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena. Specifically, this review explores the Reynolds number Re, addressing inertial effects; the Peclet number Pe, which concerns convective and diffusive transport; the capillary number Ca expressing the importance of interfacial tension; the Deborah, Weissenberg, and elasticity numbers De, Wi, and El, describing elastic effects due to deformable microstructural elements like polymers; the Grashof and Rayleigh numbers Gr and Ra, describing density-driven flows; and the Knudsen number, describing the importance of noncontinuum molecular effects. Furthermore, the long-range nature of viscous flows and the small device dimensions inherent in microfluidics mean that the influence of boundaries is typically significant. A variety of strategies have been developed to manipulate fluids by exploiting boundary effects; among these are electrokinetic effects, acoustic streaming, and fluid-structure interactions. The goal is to describe the physics behind the rich variety of fluid phenomena occurring on the nanoliter scale using simple scaling arguments, with the hopes of developing an intuitive sense for this occasionally counterintuitive world.

4,044 citations

Journal ArticleDOI
TL;DR: An overview of flows in microdevices with focus on electrokinetics, mixing and dispersion, and multiphase flows is provided, highlighting topics important for the description of the fluid dynamics: driving forces, geometry, and the chemical characteristics of surfaces.
Abstract: Microfluidic devices for manipulating fluids are widespread and finding uses in many scientific and industrial contexts. Their design often requires unusual geometries and the interplay of multiple physical effects such as pressure gradients, electrokinetics, and capillarity. These circumstances lead to interesting variants of well-studied fluid dynamical problems and some new fluid responses. We provide an overview of flows in microdevices with focus on electrokinetics, mixing and dispersion, and multiphase flows. We highlight topics important for the description of the fluid dynamics: driving forces, geometry, and the chemical characteristics of surfaces.

3,307 citations

Journal ArticleDOI
13 Mar 2014-Nature
TL;DR: The progress made by lab-on-a-chip microtechnologies in recent years is analyzed, and the clinical and research areas in which they have made the greatest impact are discussed.
Abstract: Microfluidics, a technology characterized by the engineered manipulation of fluids at the submillimetre scale, has shown considerable promise for improving diagnostics and biology research. Certain properties of microfluidic technologies, such as rapid sample processing and the precise control of fluids in an assay, have made them attractive candidates to replace traditional experimental approaches. Here we analyse the progress made by lab-on-a-chip microtechnologies in recent years, and discuss the clinical and research areas in which they have made the greatest impact. We also suggest directions that biologists, engineers and clinicians can take to help this technology live up to its potential.

2,276 citations

Journal ArticleDOI
TL;DR: Experimental results support the assertion that the dominant contribution to the dynamics of break-up arises from the pressure drop across the emerging droplet or bubble.
Abstract: This article describes the process of formation of droplets and bubbles in microfluidic T-junction geometries. At low capillary numbers break-up is not dominated by shear stresses: experimental results support the assertion that the dominant contribution to the dynamics of break-up arises from the pressure drop across the emerging droplet or bubble. This pressure drop results from the high resistance to flow of the continuous (carrier) fluid in the thin films that separate the droplet from the walls of the microchannel when the droplet fills almost the entire cross-section of the channel. A simple scaling relation, based on this assertion, predicts the size of droplets and bubbles produced in the T-junctions over a range of rates of flow of the two immiscible phases, the viscosity of the continuous phase, the interfacial tension, and the geometrical dimensions of the device.

2,071 citations