scispace - formally typeset
Search or ask a question
Author

Nathalie Mathe

Bio: Nathalie Mathe is an academic researcher from Ames Research Center. The author has contributed to research in topics: User requirements document & Hypertext. The author has an hindex of 6, co-authored 11 publications receiving 304 citations.

Papers
More filters
Journal ArticleDOI
01 Sep 1997
TL;DR: WebTaggerTM is presented, an implemented prototype of a personal bookmarking service that provides both individuals and groups with a customizable means of organizing and accessing Web-based information resources that enables users to supply feedback on the utility of these resources relative to their information needs.
Abstract: Web browser bookmarking facilities predominate as the method of choice for managing URLs. In this paper, we describe some deficiencies of current bookmarking schemes, and examine an alternative to current approaches. We present WebTagger(TM), an implemented prototype of a personal bookmarking service that provides both individuals and groups with a customizable means of organizing and accessing Web-based information resources. In addition, the service enables users to supply feedback on the utility of these resources relative to their information needs, and provides dynamically-updated ranking of resources based on incremental user feedback. Individuals may access the service from anywhere on the Internet, and require no special software. This service greatly simplifies the process of sharing URLs within groups, in comparison with manual methods involving email. The underlying bookmark organization scheme is more natural and flexible than current hierarchical schemes supported by the major Web browsers, and enables rapid access to stored bookmarks.

162 citations

Book ChapterDOI
TL;DR: This work proposes a solution which provides user-centered adaptive information retrieval and navigation which is complementary to information discovery methods which provide access to new information, and automatically manages its size in order to maintain rapid access when scaling up to large hypermedia space.
Abstract: We are focusing on information access tasks characterized by large volume of hypermedia connected technical documents, a need for rapid and effective access to familiar information, and long-term interaction with evolving information. The problem for technical users is to build and maintain a personalized task-oriented model of the information to quickly access relevant information. We propose a solution which provides user-centered adaptive information retrieval and navigation. This solution supports users in customizing information access over time. It is complementary to information discovery methods which provide access to new information, since it lets users customize future access to previously found information. It relies on a technique, called Adaptive Relevance Network, which creates and maintains a complex indexing structure to represent personal user’s information access maps organized by concepts. This technique is integrated within the Adaptive HyperMan system, which helps NASA Space Shuttle flight controllers organize and access large amount of information. It allows users to select and mark any part of a document as interesting, and to index that part with user-defined concepts. Users can then do subsequent retrieval of marked portions of documents. This functionality allows users to define and access personal collections of information, which are dynamically computed. The system also supports collaborative review by letting users share group access maps. The adaptive relevance network provides long-term adaptation based both on usage and on explicit user input. The indexing structure is dynamic and evolves over time. Learning and generalization support flexible retrieval of information under similar concepts. The network is geared towards more recent information access, and automatically manages its size in order to maintain rapid access when scaling up to large hypermedia space. We present results of simulated learning experiments.

61 citations

Proceedings Article
01 Oct 1994
TL;DR: A new model for interactively learning contextual relevance during information retrieval, and incrementally adapting retrieved information to individual user profiles is proposed, which records the relevance of references based on user feedback for specific queries and user profiles and lets users filter information by context of relevance.
Abstract: Rapid and effective to information in large electronic documentation systems can be facilitated if information relevant in an individual user's content can be automatically supplied to this user. However most of this knowledge on contextual relevance is not found within the contents of documents, it is rather established incrementally by users during information access. We propose a new model for interactively learning contextual relevance during information retrieval, and incrementally adapting retrieved information to individual user profiles. The model, called a relevance network, records the relevance of references based on user feedback for specific queries and user profiles. It also generalizes such knowledge to later derive relevant references for similar queries and profiles. The relevance network lets users filter information by context of relevance. Compared to other approaches, it does not require any prior knowledge nor training. More importantly, our approach to adaptivity is user-centered. It facilitates acceptance and understanding by users by giving them shared control over the adaptation without disturbing their primary task. Users easily control when to adapt and when to use the adapted system. Lastly, the model is independent of the particular application used to access information, and supports sharing of adaptations among users.

40 citations

Proceedings ArticleDOI
11 May 1998
TL;DR: DIAMS, a system of distributed, collaborative information agents which help users access, collect, organize, and exchange information on the World Wide Web, is presented.
Abstract: In this paper, we present DIAMS, a system of distributed, collaborative information agents which help users access, collect, organize, and exchange information on the World Wide Web. Personal agents provide their owners dynamic displays of well organized information collections, as well as friendly information management utilities. Personal agents exchange information with one another. They also work with other types of information agents such as matchmakers and knowledge experts to facilitate collaboration and communication.

11 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper is a review of existing work on adaptive hypermedia and introduces several dimensions of classification of AH systems, methods and techniques and describes the most important of them.
Abstract: Adaptive hypermedia is a new direction of research within the area of adaptive and user model-based interfaces. Adaptive hypermedia (AH) systems build a model of the individual user and apply it for adaptation to that user, for example, to adapt the content of a hypermedia page to the user's knowledge and goals, or to suggest the most relevant links to follow. AH systems are used now in several application areas where the hyperspace is reasonably large and where a hypermedia application is expected to be used by individuals with different goals, knowledge and backgrounds. This paper is a review of existing work on adaptive hypermedia. The paper is centered around a set of identified methods and techniques of AH. It introduces several dimensions of classification of AH systems, methods and techniques and describes the most important of them.

1,948 citations

Journal ArticleDOI
27 Mar 2001
TL;DR: Adaptive hypermedia as mentioned in this paper is a relatively new direction of research on the crossroads of hypermedia and user modeling, which builds a model of the goals, preferences and knowledge of each individual user, and use this model throughout the interaction with the user, in order to adapt to the needs of that user.
Abstract: Adaptive hypermedia is a relatively new direction of research on the crossroads of hypermedia and user modeling. Adaptive hypermedia systems build a model of the goals, preferences and knowledge of each individual user, and use this model throughout the interaction with the user, in order to adapt to the needs of that user. The goal of this paper is to present the state of the art in adaptive hypermedia at the eve of the year 2000, and to highlight some prospects for the future. This paper attempts to serve both the newcomers and the experts in the area of adaptive hypermedia by building on an earlier comprehensive review (Brusilovsky, 1996; Brusilovsky, 1998).

1,842 citations

Book ChapterDOI
01 Jan 2007
TL;DR: This chapter complements other chapters of this book in reviewing user models and user modeling approaches applied in adaptive Web systems by focusing on the overlay approach to user model representation and the uncertainty-based approach touser modeling.
Abstract: One distinctive feature of any adaptive system is the user model that represents essential information about each user This chapter complements other chapters of this book in reviewing user models and user modeling approaches applied in adaptive Web systems The presentation is structured along three dimensions: what is being modeled, how it is modeled, and how the models are maintained After a broad overview of the nature of the information presented in these various user models, the chapter focuses on two groups of approaches to user model representation and maintenance: the overlay approach to user model representation and the uncertainty-based approach to user modeling

869 citations

Journal ArticleDOI
Ryen W. White1, Resa A. Roth
TL;DR: This lecture introduces exploratory search, relates it to relevant extant research, outline the features of exploratorySearch systems, discuss the evaluation of these systems, and suggest some future directions for supporting exploratorysearch.
Abstract: As information becomes more ubiquitous and the demands that searchers have on search systems grow, there is a need to support search behaviors beyond simple lookup. Information seeking is the process or activity of attempting to obtain information in both human and technological contexts. Exploratory search describes an information-seeking problem context that is open-ended, persistent, and multifaceted, and information-seeking processes that are opportunistic, iterative, and multitactical. Exploratory searchers aim to solve complex problems and develop enhanced mental capacities. Exploratory search systems support this through symbiotic human-machine relationships that provide guidance in exploring unfamiliar information landscapes. Exploratory search has gained prominence in recent years. There is an increased interest from the information retrieval, information science, and human-computer interaction communities in moving beyond the traditional turn-taking interaction model support d by major Web search engines, and toward support for human intelligence amplification and information use. In this lecture, we introduce exploratory search, relate it to relevant extant research, outline the features of exploratory search systems, discuss the evaluation of these systems, and suggest some future directions for supporting exploratory search. Exploratory search is a new frontier in the search domain and is becoming increasingly important in shaping our future world. Table of Contents: Introduction / Defining Exploratory Search / Related Work / Features of Exploratory Search Systems / Evaluation of Exploratory Search Systems / Future Directions and concluding Remarks

725 citations

Journal ArticleDOI
TL;DR: This article gives a comprehensive overview of techniques for personalised hypermedia presentation by describing the data about the computer user, the computer usage and the physical environment that can be taken into account when adapting hypermedia pages to the needs of the current user.
Abstract: This article gives a comprehensive overview of techniques for personalised hypermedia presentation. It describes the data about the computer user, the computer usage and the physical environment that can be taken into account when adapting hypermedia pages to the needs of the current user. Methods for acquiring these data, for representing them as models in formal systems and for making generalisations and predictions about the user based thereon are discussed. Different types of hypermedia adaptation to the individual user's needs are distinguished and recommendations for further research and applications given. While the focus of the article is on hypermedia adaptation for improving customer relationship management utilising the World Wide Web, many of the techniques and distinctions also apply to other types of personalised hypermedia applications within and outside the World Wide Web, like adaptive educational systems.

587 citations