scispace - formally typeset
Search or ask a question
Author

Nathalie Tufenkji

Bio: Nathalie Tufenkji is an academic researcher from McGill University. The author has contributed to research in topics: Particle & Microplastics. The author has an hindex of 51, co-authored 169 publications receiving 11339 citations. Previous affiliations of Nathalie Tufenkji include Université de Montréal & Yale University.


Papers
More filters
Journal ArticleDOI
TL;DR: This Critical Review provides a critical review of the current knowledge vis-à-vis nanoplastic (NP) and microplastic (MP) aggregation, deposition, and contaminant cotransport in the environment and highlights key knowledge gaps that need to be addressed.
Abstract: Plastic litter is widely acknowledged as a global environmental threat, and poor management and disposal lead to increasing levels in the environment. Of recent concern is the degradation of plastics from macro- to micro- and even to nanosized particles smaller than 100 nm in size. At the nanoscale, plastics are difficult to detect and can be transported in air, soil, and water compartments. While the impact of plastic debris on marine and fresh waters and organisms has been studied, the loads, transformations, transport, and fate of plastics in terrestrial and subsurface environments are largely overlooked. In this Critical Review, we first present estimated loads of plastics in different environmental compartments. We also provide a critical review of the current knowledge vis-a-vis nanoplastic (NP) and microplastic (MP) aggregation, deposition, and contaminant cotransport in the environment. Important factors that affect aggregation and deposition in natural subsurface environments are identified and c...

1,338 citations

Journal ArticleDOI
TL;DR: The resulting equation overcomes the limitations of current approaches and shows remarkable agreement with exact theoretical predictions of the single-collector efficiency over a wide range of conditions commonly encountered in natural and engineered aquatic systems.
Abstract: A new equation for predicting the single-collector contact efficiency (eta0) in physicochemical particle filtration in saturated porous media is presented. The correlation equation is developed assuming that the overall single-collector efficiency can be calculated as the sum of the contributions of the individual transport mechanisms--Brownian diffusion, interception, and gravitational sedimentation. To obtain the correlation equation, the dimensionless parameters governing particle deposition are regressed against the theoretical value of the single-collector efficiency over a broad range of parameter values. Rigorous numerical solution of the convective-diffusion equation with hydrodynamic interactions and universal van der Waals attractive forces fully incorporated provided the theoretical single-collector efficiencies. The resulting equation overcomes the limitations of current approaches and shows remarkable agreement with exact theoretical predictions of the single-collector efficiency over a wide range of conditions commonly encountered in natural and engineered aquatic systems. Furthermore, experimental data are in much closer agreement with predictions based on the new correlation equation compared to other available expressions.

1,044 citations

Journal ArticleDOI
TL;DR: In this review, colloidal forces governing nanoparticle deposition and aggregation are outlined, and essential equations used to assess particle-particle and particle-surface interactions, along with Hamaker constants for specific nanoparticles and the attributes exclusive to nanoscale particle interactions, are described.
Abstract: The ever-increasing use of engineered nanomaterials will lead to heightened levels of these materials in the environment. The present review aims to provide a comprehensive overview of current knowledge regarding nanoparticle transport and aggregation in aquatic environments. Nanoparticle aggregation and deposition behavior will dictate particle transport potential and thus the environmental fate and potential ecotoxicological impacts of these materials. In this review, colloidal forces governing nanoparticle deposition and aggregation are outlined. Essential equations used to assess particle−particle and particle−surface interactions, along with Hamaker constants for specific nanoparticles and the attributes exclusive to nanoscale particle interactions, are described. Theoretical and experimental approaches for evaluating nanoparticle aggregation and deposition are presented, and the major findings of laboratory studies examining these processes are also summarized. Finally, we describe some of the chall...

1,028 citations

Journal ArticleDOI
TL;DR: No "ideal" technique was found for characterizing manufactured nanoparticles in an environmental context as each technique had its own advantages and limitations.
Abstract: Sizes of stabilized (24 h) nanoparticle suspensions were determined using several state-of-the-art analytical techniques (transmission electron microscopy; atomic force microscopy; dynamic light scattering; fluorescence correlation spectroscopy; nanoparticle tracking analysis; flow field flow fractionation). Theoretical and analytical considerations were evaluated, results were compared, and the advantages and limitations of the techniques were discussed. No "ideal" technique was found for characterizing manufactured nanoparticles in an environmental context as each technique had its own advantages and limitations.

545 citations

Journal ArticleDOI
TL;DR: It is shown that steeping a single plastic teabag at brewing temperature (95 °C) releases approximately 11.6 billion microplastics and 3.1 billion nanoplastics into a single cup of the beverage.
Abstract: The increasing presence of micro- and nano-sized plastics in the environment and food chain is of growing concern. Although mindful consumers are promoting the reduction of single-use plastics, some manufacturers are creating new plastic packaging to replace traditional paper uses, such as plastic teabags. The objective of this study was to determine whether plastic teabags could release microplastics and/or nanoplastics during a typical steeping process. We show that steeping a single plastic teabag at brewing temperature (95 °C) releases approximately 11.6 billion microplastics and 3.1 billion nanoplastics into a single cup of the beverage. The composition of the released particles is matched to the original teabags (nylon and polyethylene terephthalate) using Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The levels of nylon and polyethylene terephthalate particles released from the teabag packaging are several orders of magnitude higher than plastic loads pr...

495 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
24 Aug 2011-ACS Nano
TL;DR: In this paper, the antibacterial activity of four types of graphene-based materials (graphite (Gt), graphite oxide (GtoO), reduced graphene oxide (rGO), and reduced GtO) toward a bacterial model (Escherichia coli) was investigated.
Abstract: Health and environmental impacts of graphene-based materials need to be thoroughly evaluated before their potential applications. Graphene has strong cytotoxicity toward bacteria. To better understand its antimicrobial mechanism, we compared the antibacterial activity of four types of graphene-based materials (graphite (Gt), graphite oxide (GtO), graphene oxide (GO), and reduced graphene oxide (rGO)) toward a bacterial model—Escherichia coli. Under similar concentration and incubation conditions, GO dispersion shows the highest antibacterial activity, sequentially followed by rGO, Gt, and GtO. Scanning electron microscope (SEM) and dynamic light scattering analyses show that GO aggregates have the smallest average size among the four types of materials. SEM images display that the direct contacts with graphene nanosheets disrupt cell membrane. No superoxide anion (O2•–) induced reactive oxygen species (ROS) production is detected. However, the four types of materials can oxidize glutathione, which serves ...

2,279 citations

Journal ArticleDOI
TL;DR: This Critical Review provides a critical review of the current knowledge vis-à-vis nanoplastic (NP) and microplastic (MP) aggregation, deposition, and contaminant cotransport in the environment and highlights key knowledge gaps that need to be addressed.
Abstract: Plastic litter is widely acknowledged as a global environmental threat, and poor management and disposal lead to increasing levels in the environment. Of recent concern is the degradation of plastics from macro- to micro- and even to nanosized particles smaller than 100 nm in size. At the nanoscale, plastics are difficult to detect and can be transported in air, soil, and water compartments. While the impact of plastic debris on marine and fresh waters and organisms has been studied, the loads, transformations, transport, and fate of plastics in terrestrial and subsurface environments are largely overlooked. In this Critical Review, we first present estimated loads of plastics in different environmental compartments. We also provide a critical review of the current knowledge vis-a-vis nanoplastic (NP) and microplastic (MP) aggregation, deposition, and contaminant cotransport in the environment. Important factors that affect aggregation and deposition in natural subsurface environments are identified and c...

1,338 citations

Journal ArticleDOI
TL;DR: In this paper, the major transformation processes of Ag-NPs in various aqueous environments, particularly transformations of the metallic Ag cores caused by reactions with (in)organic ligands, and the effects of such transformations on physical and chemical stability and toxicity are discussed.
Abstract: Silver nanoparticles (Ag-NPs) readily transform in the environment, which modifies their properties and alters their transport, fate, and toxicity. It is essential to consider such transformations when assessing the potential environmental impact of Ag-NPs. This review discusses the major transformation processes of Ag-NPs in various aqueous environments, particularly transformations of the metallic Ag cores caused by reactions with (in)organic ligands, and the effects of such transformations on physical and chemical stability and toxicity. Thermodynamic arguments are used to predict what forms of oxidized silver will predominate in various environmental scenarios. Silver binds strongly to sulfur (both organic and inorganic) in natural systems (fresh and sea waters) as well as in wastewater treatment plants, where most Ag-NPs are expected to be concentrated and then released. Sulfidation of Ag-NPs results in a significant decrease in their toxicity due to the lower solubility of silver sulfide, potentiall...

1,310 citations

Journal ArticleDOI
TL;DR: The electrophoretic mobility of the particles in a given aqueous media was dominated by the presence of natural organic matter (NOM) and ionic strength, and independent of pH.
Abstract: There is a pressing need for information on the mobility of nanoparticles in the complex aqueous matrices found in realistic environmental conditions. We dispersed three different metal oxide nanoparticles (TiO(2), ZnO and CeO(2)) in samples taken from eight different aqueous media associated with seawater, lagoon, river, and groundwater, and measured their electrophoretic mobility, state of aggregation, and rate of sedimentation. The electrophoretic mobility of the particles in a given aqueous media was dominated by the presence of natural organic matter (NOM) and ionic strength, and independent of pH. NOM adsorbed onto these nanoparticles significantly reduces their aggregation, stabilizing them under many conditions. The transition from reaction to diffusion limited aggregation occurs at an electrophoretic mobility from around -2 to -0.8 microm s(-1) V(-1) cm. These results are key for designing and interpreting nanoparticle ecotoxicity studies in various environmental conditions.

1,165 citations