scispace - formally typeset
Search or ask a question
Author

Nathan C. Gianneschi

Bio: Nathan C. Gianneschi is an academic researcher from Northwestern University. The author has contributed to research in topics: Polymerization & Polymer. The author has an hindex of 47, co-authored 218 publications receiving 7446 citations. Previous affiliations of Nathan C. Gianneschi include University of California, Berkeley & University of California, San Diego.


Papers
More filters
Journal ArticleDOI
TL;DR: The course of investigations in this area is described, beginning with the development of a chemical tool kit of building blocks consisting of multiple metals and ligands, which can be rationally mixed and matched to provide structures with a wide range of properties.
Abstract: The weak-link approach (WLA) to supramolecular assemblies allows for the design of multimetallic two- and three-dimensional arrays, host-guest architectures, sensors, catalysts, switches, and signal amplification devices. This Account describes the course of our investigations in this area beginning with the development of a chemical tool kit of building blocks consisting of multiple metals and ligands. These building blocks can be rationally mixed and matched to provide structures with a wide range of properties that have been used to develop functional supramolecular architectures, including chemical sensors and allosteric catalysts.

510 citations

Journal ArticleDOI
TL;DR: This Perspective describes key advances in the field of stimuli-responsive nanomaterials while highlighting some of the many challenges faced and opportunities for development.
Abstract: Nature employs a variety of tactics to precisely time and execute the processes and mechanics of life, relying on sequential sense and response cascades to transduce signaling events over multiple length and time scales. Many of these tactics, such as the activation of a zymogen, involve the direct manipulation of a material by a stimulus. Similarly, effective therapeutics and diagnostics require the selective and efficient homing of material to specific tissues and biomolecular targets with appropriate temporal resolution. These systems must also avoid undesirable or toxic side effects and evade unwanted removal by endogenous clearing mechanisms. Nanoscale delivery vehicles have been developed to package materials with the hope of delivering them to select locations with rates of accumulation and clearance governed by an interplay between the carrier and its cargo. Many modern approaches to drug delivery have taken inspiration from natural activatable materials like zymogens, membrane proteins, and metabolites, whereby stimuli initiate transformations that are required for cargo release, prodrug activation, or selective transport. This Perspective describes key advances in the field of stimuli-responsive nanomaterials while highlighting some of the many challenges faced and opportunities for development. Major hurdles include the increasing need for powerful new tools and strategies for characterizing the dynamics, morphology, and behavior of advanced delivery systems in situ and the perennial problem of identifying truly specific and useful physical or molecular biomarkers that allow a material to autonomously distinguish diseased from normal tissue.

414 citations

Journal ArticleDOI
06 Jul 2018-Science
TL;DR: Two-dimensional covalent organic frameworks (2D COFs) offer broad monomer scope but are generally isolated as powders comprising aggregated nanometer-scale crystallites, but it is found that 2D COF formation could be controlled using a two-step procedure in which monomers are added slowly to preformed nanoparticle seeds, which should enable a broad exploration of synthetic 2D polymer structures and properties.
Abstract: Polymerization of monomers into periodic two-dimensional networks provides structurally precise, layered macromolecular sheets that exhibit desirable mechanical, optoelectronic, and molecular transport properties. Two-dimensional covalent organic frameworks (2D COFs) offer broad monomer scope but are generally isolated as powders comprising aggregated nanometer-scale crystallites. We found that 2D COF formation could be controlled using a two-step procedure in which monomers are added slowly to preformed nanoparticle seeds. The resulting 2D COFs are isolated as single-crystalline, micrometer-sized particles. Transient absorption spectroscopy of the dispersed COF nanoparticles revealed improvement in signal quality by two to three orders of magnitude relative to polycrystalline powder samples, and suggests exciton diffusion over longer length scales than those obtained through previous approaches. These findings should enable a broad exploration of synthetic 2D polymer structures and properties.

402 citations

Journal ArticleDOI
TL;DR: A previously unknown mechanism, phosphate-ATP-adenosine metabolic signaling, by which the CaP-rich mineral environment in bone tissues promotes osteogenic differentiation of human mesenchymal stem cells is unraveled.
Abstract: Synthetic matrices emulating the physicochemical properties of tissue-specific ECMs are being developed at a rapid pace to regulate stem cell fate. Biomaterials containing calcium phosphate (CaP) moieties have been shown to support osteogenic differentiation of stem and progenitor cells and bone tissue formation. By using a mineralized synthetic matrix mimicking a CaP-rich bone microenvironment, we examine a molecular mechanism through which CaP minerals induce osteogenesis of human mesenchymal stem cells with an emphasis on phosphate metabolism. Our studies show that extracellular phosphate uptake through solute carrier family 20 (phosphate transporter), member 1 (SLC20a1) supports osteogenic differentiation of human mesenchymal stem cells via adenosine, an ATP metabolite, which acts as an autocrine/paracrine signaling molecule through A2b adenosine receptor. Perturbation of SLC20a1 abrogates osteogenic differentiation by decreasing intramitochondrial phosphate and ATP synthesis. Collectively, this study offers the demonstration of a previously unknown mechanism for the beneficial role of CaP biomaterials in bone repair and the role of phosphate ions in bone physiology and regeneration. These findings also begin to shed light on the role of ATP metabolism in bone homeostasis, which may be exploited to treat bone metabolic diseases.

297 citations

Journal ArticleDOI
12 May 2015-ACS Nano
TL;DR: The coloration mechanism of deposited films are demonstrated and it is shown that the unique optical properties of synthetic melanin nanoparticles provide advantages for structural colors over other polymeric nanoparticles (i.e., polystyrene colloidal particles).
Abstract: Structural colors arising from interactions of light with submicron scale periodic structures have been found in many species across all taxa, serving multiple biological functions including sexual signaling, camouflage, and aposema- tism. Directly inspired by the extensive use of self-assembled melanosomes to produce colors in avian feathers, we set out to synthesize and assemble poly- dopamine-based synthetic melanin nanoparticles in an effort to fabricate colored films. We have quantitatively demonstrated that synthetic melanin nanoparticles have a high refractive index and broad absorption spanning across the UVvisible range, similar to natural melanins. Utilizing a thin-film interference model, we demonstrated the coloration mechanism of deposited films and showed that the unique optical properties of synthetic melanin nanoparticles provide advantages for structural colors over other polymeric nanoparticles (i.e., polystyrene colloidal particles).

232 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A critical review of the emerging field of MOF-based catalysis is presented and examples of catalysis by homogeneous catalysts incorporated as framework struts or cavity modifiers are presented.
Abstract: A critical review of the emerging field of MOF-based catalysis is presented. Discussed are examples of: (a) opportunistic catalysis with metal nodes, (b) designed catalysis with framework nodes, (c) catalysis by homogeneous catalysts incorporated as framework struts, (d) catalysis by MOF-encapsulated molecular species, (e) catalysis by metal-free organic struts or cavity modifiers, and (f) catalysis by MOF-encapsulated clusters (66 references).

7,010 citations

01 Jun 2005

3,154 citations