scispace - formally typeset
Search or ask a question
Author

Nathan K. Langford

Bio: Nathan K. Langford is an academic researcher from Delft University of Technology. The author has contributed to research in topics: Quantum entanglement & Quantum information. The author has an hindex of 41, co-authored 101 publications receiving 8619 citations. Previous affiliations of Nathan K. Langford include Austrian Academy of Sciences & University of London.


Papers
More filters
Journal ArticleDOI
15 Feb 2013-Science
TL;DR: A quantum boson-sampling machine (QBSM) is constructed to sample the output distribution resulting from the nonclassical interference of photons in an integrated photonic circuit, a problem thought to be exponentially hard to solve classically.
Abstract: Although universal quantum computers ideally solve problems such as factoring integers exponentially more efficiently than classical machines, the formidable challenges in building such devices motivate the demonstration of simpler, problem-specific algorithms that still promise a quantum speedup. We constructed a quantum boson-sampling machine (QBSM) to sample the output distribution resulting from the nonclassical interference of photons in an integrated photonic circuit, a problem thought to be exponentially hard to solve classically. Unlike universal quantum computation, boson sampling merely requires indistinguishable photons, linear state evolution, and detectors. We benchmarked our QBSM with three and four photons and analyzed sources of sampling inaccuracy. Scaling up to larger devices could offer the first definitive quantum-enhanced computation.

862 citations

Journal ArticleDOI
TL;DR: It is experimentally demonstrate the first quantum system entangled in every degree of freedom (hyperentangled) and reports the tomography of a 2 x 2 x 3 x 3 system (36-dimensional Hilbert space), which is believed to be the first reported photonic entangled system of this size to be so characterized.
Abstract: We experimentally demonstrate the first quantum system entangled in every degree of freedom (hyperentangled). Using pairs of photons produced in spontaneous parametric down-conversion, we verify entanglement by observing a Bell-type inequality violation in each degree of freedom: polarization, spatial mode, and time energy. We also produce and characterize maximally hyperentangled states and novel states simultaneously exhibiting both quantum and classical correlations. Finally, we report the tomography of a $2\ifmmode\times\else\texttimes\fi{}2\ifmmode\times\else\texttimes\fi{}3\ifmmode\times\else\texttimes\fi{}3$ system (36-dimensional Hilbert space), which we believe is the first reported photonic entangled system of this size to be so characterized.

651 citations

01 Mar 2004
TL;DR: An unambiguous experimental demonstration and comprehensive characterization of quantum CNOT operation in an optical system that produces all four entangled Bell states as a function of only the input qubits' logical values, for a single operating condition of the gate.

631 citations

Journal ArticleDOI
TL;DR: In this paper, the authors identify a gold standard for quantum information processing, a single measure of distance that can be used to compare and contrast different experiments, and enumerate a set of criteria that such a distance measure must satisfy to be both experimentally and theoretically meaningful.
Abstract: With growing success in experimental implementations it is critical to identify a gold standard for quantum information processing, a single measure of distance that can be used to compare and contrast different experiments. We enumerate a set of criteria that such a distance measure must satisfy to be both experimentally and theoretically meaningful. We then assess a wide range of possible measures against these criteria, before making a recommendation as to the best measures to use in characterizing quantum information processing.

622 citations

Journal ArticleDOI
TL;DR: This work demonstrates complete characterization of a two-qubit entangling process--a linear optics controlled-NOT gate operating with coincident detection--by quantum process tomography by using a maximum-likelihood estimation to convert the experimental data into a physical process matrix.
Abstract: We demonstrate complete characterization of a two-qubit entangling process-a linear optics controlled-NOT gate operating with coincident detection-by quantum process tomography. We use a maximum-likelihood estimation to convert the experimental data into a physical process matrix. The process matrix allows an accurate prediction of the operation of the gate for arbitrary input states and a calculation of gate performance measures such as the average gate fidelity, average purity, and entangling capability of our gate, which are 0.90, 0.83, and 0.73, respectively.

459 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The field of cavity optomechanics explores the interaction between electromagnetic radiation and nano-or micromechanical motion as mentioned in this paper, which explores the interactions between optical cavities and mechanical resonators.
Abstract: We review the field of cavity optomechanics, which explores the interaction between electromagnetic radiation and nano- or micromechanical motion This review covers the basics of optical cavities and mechanical resonators, their mutual optomechanical interaction mediated by the radiation pressure force, the large variety of experimental systems which exhibit this interaction, optical measurements of mechanical motion, dynamical backaction amplification and cooling, nonlinear dynamics, multimode optomechanics, and proposals for future cavity quantum optomechanics experiments In addition, we describe the perspectives for fundamental quantum physics and for possible applications of optomechanical devices

4,031 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that if every polarization vector rotates, the light has spin; if the phase structure rotates and if a light has orbital angular momentum (OAM), the light can be many times greater than the spin.
Abstract: As they travel through space, some light beams rotate. Such light beams have angular momentum. There are two particularly important ways in which a light beam can rotate: if every polarization vector rotates, the light has spin; if the phase structure rotates, the light has orbital angular momentum (OAM), which can be many times greater than the spin. Only in the past 20 years has it been realized that beams carrying OAM, which have an optical vortex along the axis, can be easily made in the laboratory. These light beams are able to spin microscopic objects, give rise to rotational frequency shifts, create new forms of imaging systems, and behave within nonlinear material to give new insights into quantum optics.

2,508 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the original theory and its improvements, and a few examples of experimental two-qubit gates are given, and the use of realistic components, the errors they induce in the computation, and how these errors can be corrected is discussed.
Abstract: Linear optics with photon counting is a prominent candidate for practical quantum computing. The protocol by Knill, Laflamme, and Milburn [2001, Nature (London) 409, 46] explicitly demonstrates that efficient scalable quantum computing with single photons, linear optical elements, and projective measurements is possible. Subsequently, several improvements on this protocol have started to bridge the gap between theoretical scalability and practical implementation. The original theory and its improvements are reviewed, and a few examples of experimental two-qubit gates are given. The use of realistic components, the errors they induce in the computation, and how these errors can be corrected is discussed.

2,483 citations

Journal ArticleDOI
21 Oct 2015-Nature
TL;DR: The data imply statistically significant rejection of the local-realist null hypothesis and could be used for testing less-conventional theories, and for implementing device-independent quantum-secure communication and randomness certification.
Abstract: More than 50 years ago, John Bell proved that no theory of nature that obeys locality and realism can reproduce all the predictions of quantum theory: in any local-realist theory, the correlations between outcomes of measurements on distant particles satisfy an inequality that can be violated if the particles are entangled. Numerous Bell inequality tests have been reported; however, all experiments reported so far required additional assumptions to obtain a contradiction with local realism, resulting in 'loopholes'. Here we report a Bell experiment that is free of any such additional assumption and thus directly tests the principles underlying Bell's inequality. We use an event-ready scheme that enables the generation of robust entanglement between distant electron spins (estimated state fidelity of 0.92 ± 0.03). Efficient spin read-out avoids the fair-sampling assumption (detection loophole), while the use of fast random-basis selection and spin read-out combined with a spatial separation of 1.3 kilometres ensure the required locality conditions. We performed 245 trials that tested the CHSH-Bell inequality S ≤ 2 and found S = 2.42 ± 0.20 (where S quantifies the correlation between measurement outcomes). A null-hypothesis test yields a probability of at most P = 0.039 that a local-realist model for space-like separated sites could produce data with a violation at least as large as we observe, even when allowing for memory in the devices. Our data hence imply statistically significant rejection of the local-realist null hypothesis. This conclusion may be further consolidated in future experiments; for instance, reaching a value of P = 0.001 would require approximately 700 trials for an observed S = 2.4. With improvements, our experiment could be used for testing less-conventional theories, and for implementing device-independent quantum-secure communication and randomness certification.

2,397 citations