scispace - formally typeset
N

Nathan S. Lewis

Researcher at California Institute of Technology

Publications -  730
Citations -  72550

Nathan S. Lewis is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Semiconductor & Silicon. The author has an hindex of 112, co-authored 720 publications receiving 64808 citations. Previous affiliations of Nathan S. Lewis include Lawrence Berkeley National Laboratory & Massachusetts Institute of Technology.

Papers
More filters
Journal ArticleDOI

Solar Water Splitting Cells

TL;DR: The biggest challenge is whether or not the goals need to be met to fully utilize solar energy for the global energy demand can be met in a costeffective way on the terawatt scale.
Journal ArticleDOI

Powering the planet: Chemical challenges in solar energy utilization

TL;DR: Solar energy is by far the largest exploitable resource, providing more energy in 1 hour to the earth than all of the energy consumed by humans in an entire year, and if solar energy is to be a major primary energy source, it must be stored and dispatched on demand to the end user.
Journal ArticleDOI

Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction

TL;DR: The catalytically active Ni2P nanoparticles had among the highest HER activity of any non-noble metal electrocatalyst reported to date, producing H2(g) with nearly quantitative faradaic yield, while also affording stability in aqueous acidic media.
Journal ArticleDOI

Toward Cost-Effective Solar Energy Use

TL;DR: New developments in nanotechnology, biotechnology, and the materials and physical sciences may enable step-change approaches to cost-effective, globally scalable systems for solar energy use.
Journal ArticleDOI

Research opportunities to advance solar energy utilization

TL;DR: Lewis reviews the status of solar thermal and solar fuels approaches for harnessing solar energy, as well as technology gaps for achieving cost-effective scalable deployment combined with storage technologies to provide reliable, dispatchable energy.