scispace - formally typeset
Search or ask a question
Author

Nathan S. Lewis

Bio: Nathan S. Lewis is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Semiconductor & Silicon. The author has an hindex of 112, co-authored 720 publications receiving 64808 citations. Previous affiliations of Nathan S. Lewis include Lawrence Berkeley National Laboratory & Massachusetts Institute of Technology.


Papers
More filters
Patent
29 Sep 2020
TL;DR: In this paper, the pH of the anolyte and the pH level of the catholyte are held at a steady state pH level during operation of a solar fuels generator, but the steady-state pH level is different from the steady states pH of an anoxide and a cathoxide.
Abstract: A solar fuels generator includes an anolyte and a catholyte in contact with a separator. The separator is configured such that the pH of the anolyte and the pH of the catholyte are each held at a steady state pH level during operation of the solar fuels generator. The steady state pH level of the anolyte is different from the steady state pH level of the catholyte.

1 citations

Proceedings ArticleDOI
14 Jun 2015
TL;DR: In this article, the role of CuO inclusions on the electronic properties of single crystal Cu2O wafers using Hall measurements is discussed, and it is shown that changes in the resistivity and mobility due to post-annealing are correlated to changing defect densities obtained from steady-state photoluminescence.
Abstract: Cu2O is a p-type semiconductor with desirable bulk properties for photovoltaics. However, the lack of an n-type dopant and surface instability have hindered the development of a high efficiency Cu2O device. In this work, the floating zone method is used to grow high quality single crystals of Cu2O in order to controllably study the interfacial reactions between Cu2O and its heterojunction partners. While inclusions of CuO are inherent to the floating zone growth process we show that they can be removed by post-annealing with phase purity and crystallinity shown by x-ray diffraction. We discuss the role of CuO inclusions on the electronic properties of single crystal Cu2O wafers using Hall measurements. Changes in the resistivity and mobility due to post-annealing are correlated to changing defect densities obtained from steady-state photoluminescence. The optimization of the Cu2O wafers provides a pathway towards the first float zone single crystal Cu2O photovoltaic device.

1 citations

Journal ArticleDOI
TL;DR: In this article , reductant-activated functionalization is shown to enhance the methylation of chemically exfoliated MoS2 and ceWS2 by introducing excess negative charge to facilitate a nucleophilic attack reaction.
Abstract: Reductant-activated functionalization is shown to enhance the methylation of chemically exfoliated MoS2 (ceMoS2) and ceWS2 by introducing excess negative charge to facilitate a nucleophilic attack reaction. Relative to methylation in the absence of a reductant, the reaction produces a twofold increase in coverage of ceWS2, from 25 to 52% coverage per WS2. However, at every potential, the methyl coverage on ceWS2 was ∼20% lower than that on ceMoS2. We applied grand canonical density functional theory to show that at constant potential, more negative charge is present on 1T'-MoS2 than on 1T'-WS2, making methylation both thermodynamically and kinetically more favorable for 1T'-MoS2 than 1T'-WS2. This effect was moderated when the reactions were compared at constant charge, emphasizing the importance of comparing the reactivity of materials at nominally identical electrode potentials.

1 citations

Proceedings ArticleDOI
26 Nov 2018
TL;DR: In this paper, the authors show that increasing the bulk doping in a silicon-based solar cell can increase the fraction of photo generated carriers that recombine radiatively at open circuit condition.
Abstract: We show that increasing the bulk doping in a silicon based solar cell can increase the fraction of photo generated carriers that recombine radiatively at open circuit condition. This increases the maximum achievable open circuit voltage (Voc) in a solar cell At higher doping levels auger recombination and band gap narrowing effects dominate leading to a reduction in Voc. Therefore radiative and non-radiative recombinations at Voc determines the optimum doping of the bulk to maximize the performance especially in thin solar cells with increased surface area due to surface texturing.

1 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
24 Oct 1991-Nature
TL;DR: In this article, the authors describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency.
Abstract: THE large-scale use of photovoltaic devices for electricity generation is prohibitively expensive at present: generation from existing commercial devices costs about ten times more than conventional methods1. Here we describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency. The device is based on a 10-µm-thick, optically transparent film of titanium dioxide particles a few nanometres in size, coated with a monolayer of a charge-transfer dye to sensitize the film for light harvesting. Because of the high surface area of the semiconductor film and the ideal spectral characteristics of the dye, the device harvests a high proportion of the incident solar energy flux (46%) and shows exceptionally high efficiencies for the conversion of incident photons to electrical current (more than 80%). The overall light-to-electric energy conversion yield is 7.1-7.9% in simulated solar light and 12% in diffuse daylight. The large current densities (greater than 12 mA cm-2) and exceptional stability (sustaining at least five million turnovers without decomposition), as well as the low cost, make practical applications feasible.

26,457 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This critical review shows the basis of photocatalytic water splitting and experimental points, and surveys heterogeneous photocatalyst materials for water splitting into H2 and O2, and H2 or O2 evolution from an aqueous solution containing a sacrificial reagent.
Abstract: This critical review shows the basis of photocatalytic water splitting and experimental points, and surveys heterogeneous photocatalyst materials for water splitting into H2 and O2, and H2 or O2 evolution from an aqueous solution containing a sacrificial reagent Many oxides consisting of metal cations with d0 and d10 configurations, metal (oxy)sulfide and metal (oxy)nitride photocatalysts have been reported, especially during the latest decade The fruitful photocatalyst library gives important information on factors affecting photocatalytic performances and design of new materials Photocatalytic water splitting and H2 evolution using abundant compounds as electron donors are expected to contribute to construction of a clean and simple system for solar hydrogen production, and a solution of global energy and environmental issues in the future (361 references)

8,850 citations