scispace - formally typeset
Search or ask a question
Author

Nathan S. Lewis

Bio: Nathan S. Lewis is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Semiconductor & Silicon. The author has an hindex of 112, co-authored 720 publications receiving 64808 citations. Previous affiliations of Nathan S. Lewis include Lawrence Berkeley National Laboratory & Massachusetts Institute of Technology.


Papers
More filters
Proceedings ArticleDOI
22 Jul 1997
TL;DR: In this paper, a low-power, broadly responsive vapor sensor was constructed, with each element containing the same carbon black conducting phase but a different organic polymer as the insulating phase.
Abstract: We describe herein the construction of a simple, low-power, broadly responsive vapor sensor. Carbon black−organic polymer composites have been shown to swell reversibly upon exposure to vapors. Thin films of carbon black−organic polymer composites were deposited across two metallic leads, and swelling-induced resistance changes of the films signaled the presence of vapors. To identify and classify vapors, arrays of such vapor-sensing elements were constructed, with each element containing the same carbon black conducting phase but a different organic polymer as the insulating phase. The differing gas−solid partition coefficients for the various polymers of the sensor array produced a pattern of resistance changes that can be used to classify vapors and vapor mixtures. This type of sensor array resolved common organic solvents, including molecules of different classes (such as aromatics from alcohols) as well as those within a particular class (such as benzene from toluene and methanol from ethanol). The r...

173 citations

Journal ArticleDOI
TL;DR: In this article, a two-step procedure involving radical-initiated chlorination of the Si surface with PCl5 followed by reaction of the chlorinated surface with alkyl-Grignard or alkl-lithium reagents, has been developed to functionalize crystalline (111)-oriented H-terminated Si surfaces.
Abstract: A two-step procedure, involving radical-initiated chlorination of the Si surface with PCl5 followed by reaction of the chlorinated surface with alkyl-Grignard or alkyl-lithium reagents, has been developed to functionalize crystalline (111)-oriented H-terminated Si surfaces. The surface chemistry that accompanies these reaction steps has been investigated using X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), temperature programmed desorption spectroscopy (TPDS), high-resolution electron energy loss spectroscopy (HREELS), infrared (IR) spectroscopy in both glancing transmission (TIR) and attenuated total multiple internal reflection (ATR) modes, ellipsometry, and contact angle goniometry. The XPS data show the appearance of the Cl signal after exposure to PCl5 and show its removal, and concomitant appearance of a C 1s signal, after the alkylation step. Auger electron spectra, in combination with TPD spectroscopy, demonstrate the presence of Cl after the chlorination process and it...

172 citations

Journal ArticleDOI
TL;DR: It is demonstrated that a reactively sputtered NiOx layer provides a transparent, antireflective, conductive, chemically stable, inherently catalytic coating that stabilizes many efficient and technologically important semiconducting photoanodes under viable system operating conditions, thereby allowing the use of these materials in an integrated system for the sustainable, direct production of fuels from sunlight.
Abstract: Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiOx films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of water to O2(g).

169 citations

Journal ArticleDOI
TL;DR: A taxonomy and nomenclature for solar fuels generators based on the source of the asymmetry that separates photogenerated electrons and holes was developed in this article, and three basic device types have been identified: photovoltaic cells, photoelectrochemical cells, and particulate/molecular photocatalysts.
Abstract: A number of approaches to solar fuels generation are being developed, each of which has associated advantages and challenges. Many of these solar fuels generators are identified as “photoelectrochemical cells” even though these systems collectively operate based on a suite of fundamentally different physical principles. To facilitate appropriate comparisons between solar fuels generators, as well as to enable concise and consistent identification of the state-of-the-art for designs based on comparable operating principles, we have developed a taxonomy and nomenclature for solar fuels generators based on the source of the asymmetry that separates photogenerated electrons and holes. Three basic device types have been identified: photovoltaic cells, photoelectrochemical cells, and particulate/molecular photocatalysts. We outline the advantages and technological challenges associated with each type, and provide illustrative examples for each approach as well as for hybrid approaches.

167 citations

Journal ArticleDOI
TL;DR: In this article, the chemical state, electronic properties, and geometric structure of methyl-terminated Si(111) surfaces were investigated using high-resolution synchrotron photoelectron spectroscopy and low-energy electron diffraction methods.
Abstract: The chemical state, electronic properties, and geometric structure of methyl-terminated Si(111) surfaces prepared using a two-step chlorination/alkylation process were investigated using high-resolution synchrotron photoelectron spectroscopy and low-energy electron diffraction methods. The electron diffraction data indicated that the methylated Si surfaces maintained a (1×1) structure, where the dangling bonds of the silicon surface atoms were terminated by methyl groups. The surfaces were stable to annealing at 720 K. The high degree of ordering was reflected in a well-resolved vibrational fine structure of the carbon 1s photoelectron emission, with the fine structure arising from the excitation of C-H stretching vibrations having hnu=0.38±0.01 eV. The carbon-bonded surface Si atoms exhibited a well-defined x-ray photoelectron signal having a core level shift of 0.30±0.01 eV relative to bulk Si. Electronically, the Si surface was close to the flat-band condition. The methyl termination produced a surface dipole of –0.4 eV. Surface states related to piCH3 and sigmaSi-C bonding orbitals were identified at binding energies of 7.7 and 5.4 eV, respectively. Nearly ideal passivation of Si(111) surfaces can thus be achieved by methyl termination using the two-step chlorination/alkylation process.

166 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
24 Oct 1991-Nature
TL;DR: In this article, the authors describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency.
Abstract: THE large-scale use of photovoltaic devices for electricity generation is prohibitively expensive at present: generation from existing commercial devices costs about ten times more than conventional methods1. Here we describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency. The device is based on a 10-µm-thick, optically transparent film of titanium dioxide particles a few nanometres in size, coated with a monolayer of a charge-transfer dye to sensitize the film for light harvesting. Because of the high surface area of the semiconductor film and the ideal spectral characteristics of the dye, the device harvests a high proportion of the incident solar energy flux (46%) and shows exceptionally high efficiencies for the conversion of incident photons to electrical current (more than 80%). The overall light-to-electric energy conversion yield is 7.1-7.9% in simulated solar light and 12% in diffuse daylight. The large current densities (greater than 12 mA cm-2) and exceptional stability (sustaining at least five million turnovers without decomposition), as well as the low cost, make practical applications feasible.

26,457 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This critical review shows the basis of photocatalytic water splitting and experimental points, and surveys heterogeneous photocatalyst materials for water splitting into H2 and O2, and H2 or O2 evolution from an aqueous solution containing a sacrificial reagent.
Abstract: This critical review shows the basis of photocatalytic water splitting and experimental points, and surveys heterogeneous photocatalyst materials for water splitting into H2 and O2, and H2 or O2 evolution from an aqueous solution containing a sacrificial reagent Many oxides consisting of metal cations with d0 and d10 configurations, metal (oxy)sulfide and metal (oxy)nitride photocatalysts have been reported, especially during the latest decade The fruitful photocatalyst library gives important information on factors affecting photocatalytic performances and design of new materials Photocatalytic water splitting and H2 evolution using abundant compounds as electron donors are expected to contribute to construction of a clean and simple system for solar hydrogen production, and a solution of global energy and environmental issues in the future (361 references)

8,850 citations