scispace - formally typeset
Search or ask a question
Author

Nathan S. Lewis

Bio: Nathan S. Lewis is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Semiconductor & Silicon. The author has an hindex of 112, co-authored 720 publications receiving 64808 citations. Previous affiliations of Nathan S. Lewis include Lawrence Berkeley National Laboratory & Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: The plasticization approach provides a method for achieving rapid detector response times as well as for producing a large number of chemically different vapor detectors from a limited number of initial chemical feedstocks.
Abstract: Arrays of vapor detectors have been formed through addition of varying mass fractions of the plasticizer diethylene glycol dibenzoate to carbon black−polymer composites of poly(vinyl acetate) (PVAc) or of poly(N-vinylpyrrolidone). Addition of plasticizer in 5% mass fraction increments produced 20 compositionally different detectors from each polymer composite. Differences in vapor sorption and permeability that effected changes in the dc electrical resistance response of these compositionally different detectors allowed identification and classification of various test analytes using standard chemometric methods. Glass transition temperatures, Tg, were measured using differential scanning calorimetry for plasticized polymers having a mass fraction of 0, 0.10, 0.20, 0.30, 0.40, or 0.50 of plasticizer in the composite. The plasticized PVAc composites with Tg 25 °C showed re...

67 citations

Journal ArticleDOI
TL;DR: The Si-CC-R-terminated surfaces showed a characteristic CC stretch in the infrared at 2179 cm-1, which was strongly polarized perpendicular to the Si(111) surface plane, and XPS measurements in the C 1s region showed a low binding energy peak indicative of Si-C bonding, with a coverage that was, within experimental error, identical to that of the CH3- terminated Si( 111) surface.
Abstract: Si(111) surfaces have been functionalized with Si−C⋮C−R species, where R = H or −CH3, using a two-step reaction sequence involving chlorination of H−Si(111) followed by treatment with Na−C⋮C−H or CH3−C⋮C−Na reagents. The resulting surfaces showed no detectable oxidation as evidenced by X-ray photoelectron spectroscopic (XPS) data in the Si 2p region, electrochemical measurements of Si−H oxidation, or infrared spectroscopy. The Si−C⋮C−R-terminated surfaces exhibited a characteristic C⋮C stretch in the infrared at 2179 cm-1, which was strongly polarized perpendicular to the Si(111) surface plane. XPS measurements in the C 1s region showed a low binding energy peak indicative of Si−C bonding, with a coverage that was, within experimental error, identical to that of the CH3-terminated Si(111) surface, which has been shown to fully terminate the Si atop sites on an unreconstructed Si(111) surface. The Si−C⋮C−H-terminated surfaces were further functionalized by exposure to n-C4H9Li followed by exposure to para ...

67 citations

Journal ArticleDOI
TL;DR: The agreement between the reorganization energy of the ions in solution and theorganization energy for the interfacial electron-transfer processes indicated that the reorganizations energy was dominated by the redox species in the electrolyte, as expected from an application of Marcus theory to semiconductor electrodes.
Abstract: The dependence of electron-transfer rate constants on the driving force for interfacial charge transfer has been investigated using n-type ZnO electrodes in aqueous solutions. Differential capacitance versus potential and current density versus potential measurements were used to determine the energetics and kinetics, respectively, of the interfacial electron-transfer processes. A series of nonadsorbing, one-electron, outer-sphere redox couples with formal reduction potentials that spanned approximately 900 mV allowed evaluation of both the normal and Marcus inverted regions of interfacial electron-transfer processes. All rate processes were observed to be kinetically first-order in the concentration of surface electrons and first-order in the concentration of dissolved redox acceptors. The band-edge positions of the ZnO were essentially independent of the Nernstian potential of the solution over the range 0.106−1.001 V vs SCE. The rate constant at optimal exoergicity was observed to be approximately 10-1...

66 citations

Journal ArticleDOI
TL;DR: In this paper, a closed-form analytical model is developed to describe the steady-state current density−potential (J−E) characteristics of dye-sensitized nanostructured semiconductor photoelectrodes.
Abstract: A closed-form analytical model is developed to describe the steady-state current density−potential (J−E) characteristics of dye-sensitized nanostructured semiconductor photoelectrodes. The basic components of the model are a set of differential equations that describe the generation, recombination, and transport of charge carriers in mesoporous semiconductor electrode systems. Charge-carrier transport is treated as a diffusion process, and semiclassical Marcus theory is used to describe the kinetics at the interfaces between the semiconductor and the contacting phase as well as the kinetics at the interfaces with adsorbed dye. The model relates explicitly, within a single formalism, the rate constants for charge transfer of the mesoporous membrane electrode system to conventional intramolecular and intermolecular electron-transfer rate constant expressions and to interfacial electron-transfer processes at planar metal or semiconductor electrodes. The near-equilibrium situation is considered by including t...

66 citations

Journal ArticleDOI
TL;DR: In this paper, a series of ordered, periodic arrays of low barrier height n-Si/Ni nanometer-scale contacts interspersed among high barrier height Ni/liquid contacts were prepared by evaporating Ni through bilayers of close-packed latex spheres.
Abstract: A series of ordered, periodic arrays of low barrier height n-Si/Ni nanometer-scale contacts interspersed among high barrier height n-Si/liquid contacts were prepared by evaporating Ni through bilayers of close-packed latex spheres deposited on n-Si. By varying the diameter of the spheres from 174 to 1530 nm, geometrically self-similar Si/Ni structures were produced having triangular Si/Ni features ranging from approximately 100 to 800 nm on a side. The resulting Si surfaces were used as electrodes in methanolic electrochemical cells containing LiClO4 and 1,1′-dimethylferrocene+/o. The dark current density–voltage properties of the resulting mixed barrier height contacts were strongly dependent on the size of the low barrier height contact regions even though the fraction of the Si surface covered by Ni remained constant.

66 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
24 Oct 1991-Nature
TL;DR: In this article, the authors describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency.
Abstract: THE large-scale use of photovoltaic devices for electricity generation is prohibitively expensive at present: generation from existing commercial devices costs about ten times more than conventional methods1. Here we describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency. The device is based on a 10-µm-thick, optically transparent film of titanium dioxide particles a few nanometres in size, coated with a monolayer of a charge-transfer dye to sensitize the film for light harvesting. Because of the high surface area of the semiconductor film and the ideal spectral characteristics of the dye, the device harvests a high proportion of the incident solar energy flux (46%) and shows exceptionally high efficiencies for the conversion of incident photons to electrical current (more than 80%). The overall light-to-electric energy conversion yield is 7.1-7.9% in simulated solar light and 12% in diffuse daylight. The large current densities (greater than 12 mA cm-2) and exceptional stability (sustaining at least five million turnovers without decomposition), as well as the low cost, make practical applications feasible.

26,457 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This critical review shows the basis of photocatalytic water splitting and experimental points, and surveys heterogeneous photocatalyst materials for water splitting into H2 and O2, and H2 or O2 evolution from an aqueous solution containing a sacrificial reagent.
Abstract: This critical review shows the basis of photocatalytic water splitting and experimental points, and surveys heterogeneous photocatalyst materials for water splitting into H2 and O2, and H2 or O2 evolution from an aqueous solution containing a sacrificial reagent Many oxides consisting of metal cations with d0 and d10 configurations, metal (oxy)sulfide and metal (oxy)nitride photocatalysts have been reported, especially during the latest decade The fruitful photocatalyst library gives important information on factors affecting photocatalytic performances and design of new materials Photocatalytic water splitting and H2 evolution using abundant compounds as electron donors are expected to contribute to construction of a clean and simple system for solar hydrogen production, and a solution of global energy and environmental issues in the future (361 references)

8,850 citations