scispace - formally typeset
Search or ask a question
Author

Nathan S. Lewis

Bio: Nathan S. Lewis is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Semiconductor & Silicon. The author has an hindex of 112, co-authored 720 publications receiving 64808 citations. Previous affiliations of Nathan S. Lewis include Lawrence Berkeley National Laboratory & Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of the side group on the optical, electrical and materials properties of the polymer is discussed, as well as its properties in terms of conjugation and binding properties.

20 citations

Journal ArticleDOI
TL;DR: In this article, the Schottky junction formation by stepwise evaporation of gold and copper onto methyl-terminated silicon was investigated by synchrotron X-ray photoelectron spectroscopy.

20 citations

Journal ArticleDOI
01 Aug 1989-Nature
TL;DR: In this article, the photovoltaic behavior of n-InP/metal and n-INP/liquid junctions was investigated and it was shown that the electrical properties of these semiconductor/liquid junction are superior to those of Schottky barrier systems, and that currentvoltage characteristics are a strong function of the electrochemical potential of the liquid phase.
Abstract: AN alternative to conventional solid-state photovoltaic devices is the semiconductor/liquid junction. Liquid-junction cells not only offer the possibility of integrating energy conversion and storage functions1, but also may exhibit electrical properties that are fundamentally different from those in solid-state systems2. We have investigated the photovoltaic behaviour of n-InP/metal and n-InP/liquid junctions. We have found that the electrical properties of these semiconductor/liquid junctions are superior to those of n-InP/metal (Schottky barrier) systems, and that the current-voltage characteristics are a strong function of the electrochemical potential of the liquid phase. Liquid contacts thus provide a possibility for the construction of more efficient photovoltaic devices than those available at present from Schottky barriers.

20 citations

Journal ArticleDOI
TL;DR: Comparisons between carboxylato and directly linked alkanethiolate bridges suggest differences between the coupling at the interface to either the redox center or the gold electrode in such systems.
Abstract: Fermi's golden rule is used to develop relationships between rate constants for electron transfer in donor−bridge−acceptor and electrode−bridge−acceptor systems and resistances across metal−bridge−electrode and metal−bridge−tip junctions. Experimental data on electron-transfer rates through alkanethiolate, oligophenylene, and DNA bridges are used to calculate the electronic coupling matrix element per state through these moieties. The formulation is then used to predict the resistance of these bridges between two gold contacts. This approach provides a straightforward method for experimentalists to assess the self-consistency between intramolecular electron-transfer rate constants and low-bias resistances measured for molecularly bridged junctions between two metallic contacts. Reported resistances for alkanethiolate bridges vary by a factor of 20, with predicted resistances falling within this range. However, comparisons between carboxylato and directly linked alkanethiolate bridges suggest differences between the coupling at the interface to either the redox center or the gold electrode in such systems. Calculated resistances for oligophenylene bridges are close to those measured experimentally in a similar oligophenylene system.

19 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
24 Oct 1991-Nature
TL;DR: In this article, the authors describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency.
Abstract: THE large-scale use of photovoltaic devices for electricity generation is prohibitively expensive at present: generation from existing commercial devices costs about ten times more than conventional methods1. Here we describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency. The device is based on a 10-µm-thick, optically transparent film of titanium dioxide particles a few nanometres in size, coated with a monolayer of a charge-transfer dye to sensitize the film for light harvesting. Because of the high surface area of the semiconductor film and the ideal spectral characteristics of the dye, the device harvests a high proportion of the incident solar energy flux (46%) and shows exceptionally high efficiencies for the conversion of incident photons to electrical current (more than 80%). The overall light-to-electric energy conversion yield is 7.1-7.9% in simulated solar light and 12% in diffuse daylight. The large current densities (greater than 12 mA cm-2) and exceptional stability (sustaining at least five million turnovers without decomposition), as well as the low cost, make practical applications feasible.

26,457 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This critical review shows the basis of photocatalytic water splitting and experimental points, and surveys heterogeneous photocatalyst materials for water splitting into H2 and O2, and H2 or O2 evolution from an aqueous solution containing a sacrificial reagent.
Abstract: This critical review shows the basis of photocatalytic water splitting and experimental points, and surveys heterogeneous photocatalyst materials for water splitting into H2 and O2, and H2 or O2 evolution from an aqueous solution containing a sacrificial reagent Many oxides consisting of metal cations with d0 and d10 configurations, metal (oxy)sulfide and metal (oxy)nitride photocatalysts have been reported, especially during the latest decade The fruitful photocatalyst library gives important information on factors affecting photocatalytic performances and design of new materials Photocatalytic water splitting and H2 evolution using abundant compounds as electron donors are expected to contribute to construction of a clean and simple system for solar hydrogen production, and a solution of global energy and environmental issues in the future (361 references)

8,850 citations