scispace - formally typeset
Search or ask a question
Author

Nathan S. Lewis

Bio: Nathan S. Lewis is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Semiconductor & Silicon. The author has an hindex of 112, co-authored 720 publications receiving 64808 citations. Previous affiliations of Nathan S. Lewis include Lawrence Berkeley National Laboratory & Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effects of the size, contact-angle, and coverage of gas bubbles on solar fuels devices were characterized at cm-scale, upward-facing planar and microwire-array Si photoelectrodes in stagnant electrolytes.
Abstract: The effects of the size, contact-angle, and coverage of gas bubbles on solar fuels devices were characterized at cm-scale, upward-facing planar and microwire-array Si photoelectrodes in stagnant electrolytes. Experimental measurements were supported by ray-tracing simulations of surface attached gas bubble films. A dilute, redox-active tracer allowed for the quantification of the mass-transport effects of bubble coverage during photoanodic O2(g) evolution at upward-facing photoanodes in 1.0 M KOH(aq.). Measurements of the gas coverage at upward-facing p-Si photocathodes in 0.50 M H2SO4(aq.) allowed for the nucleation rate and contact angle of H2(g) bubbles to be evaluated for systems having various surface free energies. Under simulated solar illumination, the rapid departure of small O2(g) bubbles produced stable photocurrents at upward-facing oxygen-evolving Si photoanodes and yielded increased mass-transport velocities relative to a stagnant electrolyte, indicating that bubbles can provide a net benefit to the photoelectrochemical performance of an upward-facing photoanode in solar fuels devices.

16 citations

Proceedings ArticleDOI
22 Aug 2000
TL;DR: In this article, thin films of carbon black-organic polymer composites have been deposited across two metallic leads, with swelling-induced resistance changes of the films signaling the presence of vapors.
Abstract: Thin films of carbon black-organic polymer composites have been deposited across two metallic leads, with swelling- induced resistance changes of the films signaling the presence of vapors. To identify and classify vapors, arrays of such vapor sensing elements have been constructed. Each element contained a different organic polymer as the insulating phase. The differing gas-solid partition coefficients for the various polymers of the detector array produced a pattern of resistance changes that was used to classify vapors and vapor mixtures. The performance of this system towards DNT, the predominant signature in the vapor phase above land miens, has been evaluated in detail, with robust detection demonstrated in the laboratory in less than 5 s in air at DNT levels in the low ppb range.

15 citations

Journal ArticleDOI
TL;DR: The use of electrochemistry, X-ray photoelectron spectroscopy, and resonant X-rays has unlocked the paradox of interfacial hole conduction through amorphous TiO2 (a-TiO2) to deposited N as discussed by the authors.
Abstract: The use of electrochemistry, X-ray photoelectron spectroscopy, and resonant X-ray spectroscopy has unlocked the paradox of interfacial hole conduction through amorphous TiO2 (a-TiO2) to deposited N

15 citations

Journal ArticleDOI
06 Nov 2012-ACS Nano
TL;DR: The magnetic field alignment approach provides a pathway for the directed assembly of solution-grown semiconductor wires into vertical arrays, with potential applications in solar cells as well as in other electronic devices that utilize nano- and microscale components as active elements.
Abstract: External magnetic fields have been used to vertically align ensembles of silicon microwires coated with ferromagnetic nickel films X-ray diffraction and image analysis techniques were used to quantify the degree of vertical orientation of the microwires The degree of vertical alignment and the minimum field strength required for alignment were evaluated as a function of the wire length, coating thickness, magnetic history, and substrate surface properties Nearly 100% of 100 μm long, 2 μm diameter, Si microwires that had been coated with 300 nm of Ni could be vertically aligned by a 300 G magnetic field For wires ranging from 40 to 60 μm in length, as the length of the wire increased, a higher degree of alignment was observed at lower field strengths, consistent with an increase in the available magnetic torque Microwires that had been exposed to a magnetic sweep up to 300 G remained magnetized and, therefore, aligned more readily during subsequent magnetic field alignment sweeps Alignment of the Ni-coated Si microwires occurred at lower field strengths on hydrophilic Si substrates than on hydrophobic Si substrates The magnetic field alignment approach provides a pathway for the directed assembly of solution-grown semiconductor wires into vertical arrays, with potential applications in solar cells as well as in other electronic devices that utilize nano- and microscale components as active elements

15 citations

Journal ArticleDOI
TL;DR: In this paper, the electrocatalytic behavior of Ni and Pt nanoparticles for the hydrogen-evolution reaction (HER) on p-type Si photocathodes was measured experimentally and the current density vs. potential (J-E) characteristics of a general metal catalyst on pSi was modeled as a combination of a Si photodiode in series electrically with metal electro catalysts.

15 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
24 Oct 1991-Nature
TL;DR: In this article, the authors describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency.
Abstract: THE large-scale use of photovoltaic devices for electricity generation is prohibitively expensive at present: generation from existing commercial devices costs about ten times more than conventional methods1. Here we describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency. The device is based on a 10-µm-thick, optically transparent film of titanium dioxide particles a few nanometres in size, coated with a monolayer of a charge-transfer dye to sensitize the film for light harvesting. Because of the high surface area of the semiconductor film and the ideal spectral characteristics of the dye, the device harvests a high proportion of the incident solar energy flux (46%) and shows exceptionally high efficiencies for the conversion of incident photons to electrical current (more than 80%). The overall light-to-electric energy conversion yield is 7.1-7.9% in simulated solar light and 12% in diffuse daylight. The large current densities (greater than 12 mA cm-2) and exceptional stability (sustaining at least five million turnovers without decomposition), as well as the low cost, make practical applications feasible.

26,457 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This critical review shows the basis of photocatalytic water splitting and experimental points, and surveys heterogeneous photocatalyst materials for water splitting into H2 and O2, and H2 or O2 evolution from an aqueous solution containing a sacrificial reagent.
Abstract: This critical review shows the basis of photocatalytic water splitting and experimental points, and surveys heterogeneous photocatalyst materials for water splitting into H2 and O2, and H2 or O2 evolution from an aqueous solution containing a sacrificial reagent Many oxides consisting of metal cations with d0 and d10 configurations, metal (oxy)sulfide and metal (oxy)nitride photocatalysts have been reported, especially during the latest decade The fruitful photocatalyst library gives important information on factors affecting photocatalytic performances and design of new materials Photocatalytic water splitting and H2 evolution using abundant compounds as electron donors are expected to contribute to construction of a clean and simple system for solar hydrogen production, and a solution of global energy and environmental issues in the future (361 references)

8,850 citations