scispace - formally typeset
Search or ask a question
Author

Naveen K. Nishchal

Bio: Naveen K. Nishchal is an academic researcher from Indian Institute of Technology Patna. The author has contributed to research in topics: Encryption & Fourier transform. The author has an hindex of 27, co-authored 119 publications receiving 2279 citations. Previous affiliations of Naveen K. Nishchal include Indian Institute of Technology Delhi & Indian Institute of Technology Guwahati.


Papers
More filters
Journal ArticleDOI
TL;DR: An overview of the potential, recent advances, and challenges of optical security and encryption using free space optics is presented, highlighting the need for more specialized hardware and image processing algorithms.
Abstract: Information security and authentication are important challenges facing society. Recent attacks by hackers on the databases of large commercial and financial companies have demonstrated that more research and development of advanced approaches are necessary to deny unauthorized access to critical data. Free space optical technology has been investigated by many researchers in information security, encryption, and authentication. The main motivation for using optics and photonics for information security is that optical waveforms possess many complex degrees of freedom such as amplitude, phase, polarization, large bandwidth, nonlinear transformations, quantum properties of photons, and multiplexing that can be combined in many ways to make information encryption more secure and more difficult to attack. This roadmap article presents an overview of the potential, recent advances, and challenges of optical security and encryption using free space optics. The roadmap on optical security is comprised of six categories that together include 16 short sections written by authors who have made relevant contributions in this field. The first category of this roadmap describes novel encryption approaches, including secure optical sensing which summarizes double random phase encryption applications and flaws [Yamaguchi], the digital holographic encryption in free space optical technique which describes encryption using multidimensional digital holography [Nomura], simultaneous encryption of multiple signals [Perez-Cabre], asymmetric methods based on information truncation [Nishchal], and dynamic encryption of video sequences [Torroba]. Asymmetric and one-way cryptosystems are analyzed by Peng. The second category is on compression for encryption. In their respective contributions, Alfalou and Stern propose similar goals involving compressed data and compressive sensing encryption. The very important area of cryptanalysis is the topic of the third category with two sections: Sheridan reviews phase retrieval algorithms to perform different attacks, whereas Situ discusses nonlinear optical encryption techniques and the development of a rigorous optical information security theory. The fourth category with two contributions reports how encryption could be implemented at the nano- or micro-scale. Naruse discusses the use of nanostructures in security applications and Carnicer proposes encoding information in a tightly focused beam. In the fifth category, encryption based on ghost imaging using single-pixel detectors is also considered. In particular, the authors [Chen, Tajahuerce] emphasize the need for more specialized hardware and image processing algorithms. Finally, in the sixth category, Mosk and Javidi analyze in their corresponding papers how quantum imaging can benefit optical encryption systems. Sources that use few photons make encryption systems much more difficult to attack, providing a secure method for authentication.

317 citations

Journal ArticleDOI
TL;DR: In this paper, the input image to be encrypted is multiplied by a phase mask, and either its Fourier or fractional Fourier transform is obtained using interference with a wave from another random phase mask.

127 citations

Journal ArticleDOI
TL;DR: A fully phase encryption system, using fractional Fourier transform to encrypt and decrypt a 2-D phase image obtained from an amplitude image, and experimental results in support of the proposed idea are presented.
Abstract: We implement a fully phase encryption system, using fractional Fourier transform to encrypt and decrypt a 2-D phase image obtained from an amplitude image. The encrypted image is holographically recorded in a barium titanate crystal and is then decrypted by generating through phase conjugation, a conjugate of the encrypted image. The decrypted phase image is converted into an amplitude image by the phase contrast technique using an electrically addressed spatial light modulator. Experimental results in support of the proposed idea are presented.

117 citations

Journal ArticleDOI
TL;DR: An image encryption technique based on the interference principle and phase-truncation approach in the fractional Fourier domain that offers multiple levels of security with asymmetric keys and is free from the silhouette problem.
Abstract: We propose an image encryption technique based on the interference principle and phase-truncation approach in the fractional Fourier domain. The proposed scheme offers multiple levels of security with asymmetric keys and is free from the silhouette problem. Multiple input images bonded with random phase masks are independently fractional Fourier transformed. Amplitude truncation of obtained spectrum helps generate individual and universal keys while phase truncation generates two phase-only masks analytically. For decryption, these two phase-only masks optically interfere, and this results in the phase-truncated function in the output. After using the correct random phase mask, universal key, individual key, and fractional orders, the original image is retrieved successfully. Computer simulation results with four gray-scale images validate the proposed method. To measure the effectiveness of the proposed method, we calculated the mean square error between the original and the decrypted images. In this scheme, the encryption process and decryption keys formation are complicated and should be realized digitally. For decryption, an optoelectronic scheme has been suggested.

110 citations

Journal ArticleDOI
TL;DR: The cryptanalysis has been carried out, which proves the robustness of proposed scheme against known-plaintext, chosen-plain text, and special attacks, and a simple optical setup for decryption has been suggested.
Abstract: We propose a novel nonlinear image-encryption scheme based on a Gerchberg-Saxton (G-S) phase-retrieval algorithm in the Fresnel transform domain. The decryption process can be performed using conventional double random phase encoding (DRPE) architecture. The encryption is realized by applying G-S phase-retrieval algorithm twice, which generates two asymmetric keys from intermediate phases. The asymmetric keys are generated in such a way that decryption is possible optically with a conventional DRPE method. Due to the asymmetric nature of the keys, the proposed encryption process is nonlinear and offers enhanced security. The cryptanalysis has been carried out, which proves the robustness of proposed scheme against known-plaintext, chosen-plaintext, and special attacks. A simple optical setup for decryption has also been suggested. Results of computer simulation support the idea of the proposed cryptosystem.

104 citations


Cited by
More filters
Book ChapterDOI
01 Nov 2008
TL;DR: Content-based image retrieval (CBIR), emerged as a promising mean for retrieving images and browsing large images databases and is the process of retrieving images from a collection based on automatically extracted features.
Abstract: "A picture is worth one thousand words". This proverb comes from Confucius a Chinese philosopher before about 2500 years ago. Now, the essence of these words is universally understood. A picture can be magical in its ability to quickly communicate a complex story or a set of ideas that can be recalled by the viewer later in time. Visual information plays an important role in our society, it will play an increasingly pervasive role in our lives, and there will be a growing need to have these sources processed further. The pictures or images are used in many application areas like architectural and engineering design, fashion, journalism, advertising, entertainment, etc. Thus it provides the necessary opportunity for us to use the abundance of images. However, the knowledge will be useless if one can't _nd it. In the face of the substantive and increasing apace images, how to search and to retrieve the images that we interested with facility is a fatal problem: it brings a necessity for image retrieval systems. As we know, visual features of the images provide a description of their content. Content-based image retrieval (CBIR), emerged as a promising mean for retrieving images and browsing large images databases. CBIR has been a topic of intensive research in recent years. It is the process of retrieving images from a collection based on automatically extracted features.

727 citations

Journal ArticleDOI
TL;DR: A two-dimensional Logistic-adjusted-Sine map (2D-LASM) is proposed that has better ergodicity and unpredictability, and a wider chaotic range than many existing chaotic maps.

496 citations

Journal ArticleDOI
TL;DR: Optical processing methodologies, based on filtering, are described that are applicable to transmission and/or data storage and the advantages and limitations of a set of optical compression and encryption methods are discussed.
Abstract: Over the years extensive studies have been carried out to apply coherent optics methods in real-time communications and image transmission. This is especially true when a large amount of information needs to be processed, e.g., in high-resolution imaging. The recent progress in data-processing networks and communication systems has considerably increased the capacity of information exchange. However, the transmitted data can be intercepted by nonauthorized people. This explains why considerable effort is being devoted at the current time to data encryption and secure transmission. In addition, only a small part of the overall information is really useful for many applications. Consequently, applications can tolerate information compression that requires important processing when the transmission bit rate is taken into account. To enable efficient and secure information exchange, it is often necessary to reduce the amount of transmitted information. In this context, much work has been undertaken using the principle of coherent optics filtering for selecting relevant information and encrypting it. Compression and encryption operations are often carried out separately, although they are strongly related and can influence each other. Optical processing methodologies, based on filtering, are described that are applicable to transmission and/or data storage. Finally, the advantages and limitations of a set of optical compression and encryption methods are discussed.

463 citations

Journal ArticleDOI
TL;DR: This paper presents a review of optical technologies for information security, and theoretical principles and implementation examples are presented to illustrate each optical security system.
Abstract: Information security with optical means, such as double random phase encoding, has been investigated by various researchers. It has been demonstrated that optical technology possesses several unique characteristics for securing information compared with its electronic counterpart, such as many degrees of freedom. In this paper, we present a review of optical technologies for information security. Optical security systems are reviewed, and theoretical principles and implementation examples are presented to illustrate each optical security system. In addition, advantages and potential weaknesses of each optical security system are analyzed and discussed. It is expected that this review not only will provide a clear picture about current developments in optical security systems but also may shed some light on future developments.

415 citations

Journal ArticleDOI
TL;DR: An overview of the potential, recent advances, and challenges of optical security and encryption using free space optics is presented, highlighting the need for more specialized hardware and image processing algorithms.
Abstract: Information security and authentication are important challenges facing society. Recent attacks by hackers on the databases of large commercial and financial companies have demonstrated that more research and development of advanced approaches are necessary to deny unauthorized access to critical data. Free space optical technology has been investigated by many researchers in information security, encryption, and authentication. The main motivation for using optics and photonics for information security is that optical waveforms possess many complex degrees of freedom such as amplitude, phase, polarization, large bandwidth, nonlinear transformations, quantum properties of photons, and multiplexing that can be combined in many ways to make information encryption more secure and more difficult to attack. This roadmap article presents an overview of the potential, recent advances, and challenges of optical security and encryption using free space optics. The roadmap on optical security is comprised of six categories that together include 16 short sections written by authors who have made relevant contributions in this field. The first category of this roadmap describes novel encryption approaches, including secure optical sensing which summarizes double random phase encryption applications and flaws [Yamaguchi], the digital holographic encryption in free space optical technique which describes encryption using multidimensional digital holography [Nomura], simultaneous encryption of multiple signals [Perez-Cabre], asymmetric methods based on information truncation [Nishchal], and dynamic encryption of video sequences [Torroba]. Asymmetric and one-way cryptosystems are analyzed by Peng. The second category is on compression for encryption. In their respective contributions, Alfalou and Stern propose similar goals involving compressed data and compressive sensing encryption. The very important area of cryptanalysis is the topic of the third category with two sections: Sheridan reviews phase retrieval algorithms to perform different attacks, whereas Situ discusses nonlinear optical encryption techniques and the development of a rigorous optical information security theory. The fourth category with two contributions reports how encryption could be implemented at the nano- or micro-scale. Naruse discusses the use of nanostructures in security applications and Carnicer proposes encoding information in a tightly focused beam. In the fifth category, encryption based on ghost imaging using single-pixel detectors is also considered. In particular, the authors [Chen, Tajahuerce] emphasize the need for more specialized hardware and image processing algorithms. Finally, in the sixth category, Mosk and Javidi analyze in their corresponding papers how quantum imaging can benefit optical encryption systems. Sources that use few photons make encryption systems much more difficult to attack, providing a secure method for authentication.

317 citations