scispace - formally typeset
Search or ask a question
Author

Navid Paydavosi

Other affiliations: University of Alberta
Bio: Navid Paydavosi is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: BSIM & Carbon nanotube field-effect transistor. The author has an hindex of 13, co-authored 23 publications receiving 475 citations. Previous affiliations of Navid Paydavosi include University of Alberta.

Papers
More filters
Journal ArticleDOI
TL;DR: Two turn-key surface potential-based compact models are developed to simulate multigate transistors for integrated circuit (IC) designs and they are selected as the world's first industry-standard compact model for the FinFET.
Abstract: Two turn-key surface potential-based compact models are developed to simulate multigate transistors for integrated circuit (IC) designs. The BSIM-CMG (common-multigate) model is developed to simulate double-, triple-, and all-around-gate FinFETs and it is selected as the world's first industry-standard compact model for the FinFET. The BSIM-IMG (independent-multigate) model is developed for independent double-gate, ultrathin body (UTB) transistors, capturing the dynamic threshold voltage adjustment with back gate bias. Starting from long-channel devices, the basic models are first obtained using a Poisson-carrier transport approach. The basic models agree with the results of numerical two-dimensional device simulators. The real-device effects then augment the basic models. All the important real-device effects, such as short-channel effects (SCEs), quantum mechanical confinement effects, mobility degradation, and parasitics are included in the models. BSIM-CMG and BSIM-IMG have been validated with hardware silicon-based data from multiple technologies. The developed models also meet the stringent quality assurance tests expected of production level models.

103 citations

Journal ArticleDOI
TL;DR: The BSIM6 model has been extensively validated with industry data from 40-nm technology node and shows excellent source-drain symmetry during both dc and small signal analysis, thus giving excellent results during analog and RF circuit simulations.
Abstract: BSIM6 is the latest industry-standard bulk MOSFET model from the BSIM group developed specially for accurate analog and RF circuit designs. The popular real-device effects have been brought from BSIM4. The model shows excellent source-drain symmetry during both dc and small signal analysis, thus giving excellent results during analog and RF circuit simulations, e.g., harmonic balance simulation. The model is fully scalable with geometry, biases, and temperature. The model has a physical charge-based capacitance model including polydepletion and quantum-mechanical effect thereby giving accurate results in small signal and transient simulations. The BSIM6 model has been extensively validated with industry data from 40-nm technology node.

102 citations

Proceedings ArticleDOI
12 Nov 2012
TL;DR: The BSIM-CMG model has been developed to model common symmetric double, triple, quadruple and surround gate MOSFETs as discussed by the authors, which is the surface potential based model for multi-gate MOSFs.
Abstract: BSIM compact models have served industry for more than a decade starting with BSIM3 and later BSIM4 and BSIMSOI. Here we will briefly discuss the ongoing work on current and future device models in BSIM group. BSIM6 is the next generation bulk RF MOSFET Model which uses charge based core with physical models adapted from BSIM4. Model fulfills all symmetry tests and shows correct slopes for harmonics. The BSIM-CMG and BSIM-IMG are the surface potential based models for multi-gate MOSFETs. The BSIM-CMG model has been developed to model common symmetric double, triple, quadruple and surround gate MOSFET. The BSIM-IMG model has been developed to model independent double-gate MOSFET capturing threshold voltage variation with back gate bias. Models include all read device effects like SCE, DIBL, mobility degradation, poly depletion, QME etc.

44 citations

Proceedings ArticleDOI
31 Oct 2013
TL;DR: In this article, a unified FinFET compact model is proposed for devices with complex fin cross-sections, which is represented in a normalized form, where only four different model parameters are needed.
Abstract: A unified FinFET compact model is proposed for devices with complex fin cross-sections. It is represented in a normalized form, where only four different model parameters are needed. The proposed model accurately predicts the current-voltage characteristics of different FinFETs structures such as Double-Gate (DG), Cylindrical Gate-All-Around (Cy-GAA), or Rectangular Gate-All-Around (Re-GAA) FinFETs. In addition, for the first time, Trapezoidal Triple-Gate (T-TG) FinFETs are accurately modelled. Short-Channel-Effects (SCE) sub-models have been also implemented in the presented work. The model has been verified with TCAD data.

33 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A high density, low-power standard cell architecture, developed using design/technology co-optimization (DTCO), as well as example SRAM cells are shown, and the PDK transistor electrical assumptions are explained, as are the FEOL and BEOL design rules.

326 citations

Proceedings Article
01 Jan 2006
TL;DR: Evidence is provided that, as a result of constant-field scaling, the peak fT, peak fMAX, and optimum noise figure NFMIN current densities of Si and SOI n-channel MOSFETs are largely unchanged over technology nodes and foundries, and constant current-density biasing schemes are proposed to be applied to M OSFET analog/mixed-signal/RF and high-speed digital circuit design.
Abstract: This paper provides evidence that, as a result of constant-field scaling, the peak f T (approx. 0.3 mA/μm), peak f MAX (approx. 0.2 mA/μm), and optimum noise figure NF MIN (approx. 0.15 mA/pm) current densities of Si and SOI n-channel MOSFETs are largely unchanged over technology nodes and foundries. It is demonstrated that the characteristic current densities also remain invariant for the most common circuit topologies such as MOSFET cascodes, MOS-SiGe HBT cascodes, current-mode logic (CML) gates, and nMOS transimpedance amplifiers (TIAs) with active pMOSFET loads. As a consequence, it is proposed that constant current-density biasing schemes be applied to MOSFET analog/mixed-signal/RF and high-speed digital circuit design. This will alleviate the problem of ever-diminishing effective gate voltages as CMOS is scaled below 90 nm, and will reduce the impact of statistical process variation, temperature and bias current variation on circuit performance. The second half of the paper illustrates that constant current-density biasing allows for the porting of SiGe BiCMOS cascode operational amplifiers, low-noise CMOS TIAs, and MOS-CML and BiCMOS-CML logic gates and output drivers between technology nodes and foundries, and even from bulk CMOS to SOI processes, with little or no redesign. Examples are provided of several record-setting circuits such as: 1) SiGe BiCMOS operational amplifiers with up to 37-GHz unity gain bandwidth; 2) a 2.5-V SiGe BiCMOS high-speed logic chip set consisting of 49-GHz retimer, 40-GHz TIAs, 80-GHz output driver with pre-emphasis and output swing control; and 3) 1-V 90-nm bulk and SOI CMOS TIAs with over 26-GHz bandwidth, less than 8-dB noise figure and operating at data rates up to 38.8 Gb/s. Such building blocks are required for the next generation of low-power 40-80 Gb/s wireline transceivers.

181 citations

Journal ArticleDOI
TL;DR: Research on FinFETs from the bottommost device level to the topmost architecture level is reviewed and various possible FinFet asymmetries and their impact are surveyed, and novel logic-level and architecture-level tradeoffs offered by FinFetts are surveyed.
Abstract: Since Moore’s law driven scaling of planar MOSFETs faces formidable challenges in the nanometer regime, FinFETs and Trigate FETs have emerged as their successors. Owing to the presence of multiple (two/three) gates, FinFETs/Trigate FETs are able to tackle short-channel effects (SCEs) better than conventional planar MOSFETs at deeply scaled technology nodes and thus enable continued transistor scaling. In this paper, we review research on FinFETs from the bottommost device level to the topmost architecture level. We survey different types of FinFETs, various possible FinFET asymmetries and their impact, and novel logic-level and architecture-level tradeoffs offered by FinFETs. We also review analysis and optimization tools that are available for characterizing FinFET devices, circuits, and architectures.

142 citations

Journal ArticleDOI
TL;DR: Two turn-key surface potential-based compact models are developed to simulate multigate transistors for integrated circuit (IC) designs and they are selected as the world's first industry-standard compact model for the FinFET.
Abstract: Two turn-key surface potential-based compact models are developed to simulate multigate transistors for integrated circuit (IC) designs. The BSIM-CMG (common-multigate) model is developed to simulate double-, triple-, and all-around-gate FinFETs and it is selected as the world's first industry-standard compact model for the FinFET. The BSIM-IMG (independent-multigate) model is developed for independent double-gate, ultrathin body (UTB) transistors, capturing the dynamic threshold voltage adjustment with back gate bias. Starting from long-channel devices, the basic models are first obtained using a Poisson-carrier transport approach. The basic models agree with the results of numerical two-dimensional device simulators. The real-device effects then augment the basic models. All the important real-device effects, such as short-channel effects (SCEs), quantum mechanical confinement effects, mobility degradation, and parasitics are included in the models. BSIM-CMG and BSIM-IMG have been validated with hardware silicon-based data from multiple technologies. The developed models also meet the stringent quality assurance tests expected of production level models.

103 citations

Journal ArticleDOI
TL;DR: The BSIM6 model has been extensively validated with industry data from 40-nm technology node and shows excellent source-drain symmetry during both dc and small signal analysis, thus giving excellent results during analog and RF circuit simulations.
Abstract: BSIM6 is the latest industry-standard bulk MOSFET model from the BSIM group developed specially for accurate analog and RF circuit designs. The popular real-device effects have been brought from BSIM4. The model shows excellent source-drain symmetry during both dc and small signal analysis, thus giving excellent results during analog and RF circuit simulations, e.g., harmonic balance simulation. The model is fully scalable with geometry, biases, and temperature. The model has a physical charge-based capacitance model including polydepletion and quantum-mechanical effect thereby giving accurate results in small signal and transient simulations. The BSIM6 model has been extensively validated with industry data from 40-nm technology node.

102 citations