scispace - formally typeset
Search or ask a question
Author

Nazariah Allaudin Zeenathul

Bio: Nazariah Allaudin Zeenathul is an academic researcher from Universiti Putra Malaysia. The author has contributed to research in topics: Apoptosis & HBsAg. The author has an hindex of 11, co-authored 17 publications receiving 391 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Zerumbone-loaded nanostructured lipid carriers (ZER-NLC) have potential as a sustained-release drug carrier system for the treatment of leukemia, according to physicochemical properties.
Abstract: Zerumbone, a natural dietary lipophilic compound with low water solubility (1.296 mg/L at 25°C) was used in this investigation. The zerumbone was loaded into nanostructured lipid carriers using a hot, high-pressure homogenization technique. The physicochemical properties of the zerumbone-loaded nanostructured lipid carriers (ZER-NLC) were determined. The ZER-NLC particles had an average size of 52.68 ± 0.1 nm and a polydispersity index of 0.29 ± 0.004 μm. Transmission electron microscopy showed that the particles were spherical in shape. The zeta potential of the ZER-NLC was −25.03 ± 1.24 mV, entrapment efficiency was 99.03%, and drug loading was 7.92%. In vitro drug release of zerumbone from ZER-NLC was 46.7%, and for a pure zerumbone dispersion was 90.5% over 48 hours, following a zero equation. Using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay in human T-cell acute lymphoblastic leukemia (Jurkat) cells, the half maximal inhibitory concentration (IC50) of ZER-NLC was 5.64 ± 0.38 μg/mL, and for free zerumbone was 5.39 ± 0.43 μg/mL after 72 hours of treatment. This study strongly suggests that ZER-NLC have potential as a sustained-release drug carrier system for the treatment of leukemia.

116 citations

Journal ArticleDOI
TL;DR: Findings show that the Zerumbone (ZER)-loaded nanostructured lipid carrier (NLC) prepared by hot high-pressure homogenization techniques in an acute human lymphoblastic leukemia (Jurkat) cell line in vitro is a potentially useful treatment for acute lymphoblasts in humans.
Abstract: This investigation evaluated the antileukemia properties of a zerumbone (ZER)-loaded nanostructured lipid carrier (NLC) prepared by hot high-pressure homogenization techniques in an acute human lymphoblastic leukemia (Jurkat) cell line in vitro. The apoptogenic effect of the ZER-NLC on Jurkat cells was determined by fluorescent and electron microscopy, Annexin V-fluorescein isothiocyanate, Tdt-mediated dUTP nick-end labeling assay, cell cycle analysis, and caspase activity. An MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide) assay showed that ZER-NLC did not have adverse effects on normal human peripheral blood mononuclear cells. ZER-NLC arrested the Jurkat cells at G2/M phase with inactivation of cyclin B1 protein. The study also showed that the antiproliferative effect of ZER-NLC on Jurkat cells is through the intrinsic apoptotic pathway via activation of caspase-3 and caspase-9, release of cytochrome c from the mitochondria into the cytosol, and subsequent cleavage of poly (adenosine diphosphate-ribose) polymerase (PARP). These findings show that the ZER-NLC is a potentially useful treatment for acute lymphoblastic leukemia in humans.

66 citations

Journal ArticleDOI
TL;DR: Diagnostic methods for FCoVs are described and compared and a brief account of the virus biology, epidemiology, and pathogenesis is included.
Abstract: Feline coronaviruses (FCoVs) are found throughout the world. Infection with FCoV can result in a diverse range of signs from clinically inapparent infections to a highly fatal disease called feline infectious peritonitis (FIP). FIP is one of the most serious viral diseases of cats. While there is neither an effective vaccine, nor a curative treatment for FIP, a diagnostic protocol for FCoV would greatly assist in the management and control of the virus. Clinical findings in FIP are non-specific and not helpful in making a differential diagnosis. Haematological and biochemical abnormalities in FIP cases are also non-specific. The currently available serological tests have low specificity and sensitivity for detection of active infection and cross-react with FCoV strains of low pathogenicity, the feline enteric coronaviruses (FECV). Reverse transcriptase polymerase chain reaction (RT-PCR) has been used to detect FCoV and is rapid and sensitive, but results must be interpreted in the context of clinical findings. At present, a definitive diagnosis of FIP can be established only by histopathological examination of biopsies. This paper describes and compares diagnostic methods for FCoVs and includes a brief account of the virus biology, epidemiology, and pathogenesis.

42 citations

Journal ArticleDOI
TL;DR: This study has shown that delta-tocotrienol possessed a higher efficacy (shorter induction period) and effectiveness in the execution of apoptosis in both A549 and U87MG cancer cells as compared to alpha- and gamma-tocOTrienols.
Abstract: Tocotrienols, especially the gamma isomer was discovered to possess cytotoxic effects associated with the induction of apoptosis in numerous cancers. Individual tocotrienol isomers are believed to induce dissimilar apoptotic mechanisms in different cancer types. This study was aimed to compare the cytotoxic potency of alpha-, gamma- and delta-tocotrienols, and to explore their resultant apoptotic mechanisms in human lung adenocarcinoma A549 and glioblastoma U87MG cells which are scarcely researched. The cytotoxic effects of alpha-, gamma- and delta-tocotrienols in both A549 and U87MG cancer cells were first determined at the cell viability and morphological aspects. DNA damage types were then identified by comet assay and flow cytometric study was carried out to support the incidence of apoptosis. The involvements of caspase-8, Bid, Bax and mitochondrial membrane permeability (MMP) in the execution of apoptosis were further expounded. All tocotrienols inhibited the growth of A549 and U87MG cancer cells in a concentration- and time-dependent manner. These treated cancer cells demonstrated some hallmarks of apoptotic morphologies, apoptosis was further confirmed by cell accumulation at the pre-G1 stage. All tocotrienols induced only double strand DNA breaks (DSBs) and no single strand DNA breaks (SSBs) in both treated cancer cells. Activation of caspase-8 leading to increased levels of Bid and Bax as well as cytochrome c release attributed by the disruption of mitochondrial membrane permeability in both A549 and U87MG cells were evident. This study has shown that delta-tocotrienol, in all experimental approaches, possessed a higher efficacy (shorter induction period) and effectiveness (higher induction rate) in the execution of apoptosis in both A549 and U87MG cancer cells as compared to alpha- and gamma-tocotrienols. Tocotrienols in particular the delta isomer can be an alternative chemotherapeutic agent for treating lung and brain cancers.

42 citations

Journal ArticleDOI
TL;DR: The extracts (especially ethyl acetate and hexane) of Acalypha wilkesiana possess valuable cytotoxic effects that trigger apoptosis in U87MG and A549 cancer cells through induction of DNA SSBs and DSBs.

37 citations


Cited by
More filters
Journal Article

524 citations

Journal ArticleDOI
TL;DR: Inhibition of targets such as cholesterol synthesis and metabolites, reactive oxygen species and hypoxia, macrophage activation and conversion, indoleamine 2,3-dioxygenase regulation of dendritic cells, vascular endothelial growth factor regulation of angiogenesis, fibrosis inhibition, endoglin, and Janus kinase signaling emerge as examples of important potential nexuses in the regulation of tumorigenesis and the tumor microenvironment that can be targeted.

270 citations

Journal ArticleDOI
TL;DR: The principle and types of biosensors and their applications in the diagnosis of distinct infectious diseases were comprehensively explained and the pros and cons of existing methods as a conclusion and future perspective were elaborated.

193 citations

Journal ArticleDOI
TL;DR: Besides being eco-friendly, this mushroom based approach is easily scalable and demonstrates remarkable RGO stability and biocompatibility, even without any form of functionalization.
Abstract: Purpose: A simple, one-pot strategy was used to synthesize reduced graphene oxide (RGO) nanosheets by utilizing an easily available over-the-counter medicinal and edible mushroom, Ganoderma lucidum. Methods: The mushroom was boiled in hot water to liberate the polysaccharides, the extract of which was then used directly for the reduction of graphene oxide. The abundance of polysaccharides present in the mushroom serves as a good reducing agent. The proposed strategy evades the use of harmful and expensive chemicals and avoids the typical tedious reaction methods. Results: More importantly, the mushroom extract can be easily separated from the product without generating any residual byproducts and can be reused at least three times with good conversion efficiency (75%). It was readily dispersible in water without the need of ultrasonica tion or any surfactants; whereas 5 minutes of ultrasonication with various solvents produced RGO which was stable for the tested period of 1 year. Based on electrochemical measurements, the followed method did not jeopardize RGO’s electrical conductivity. Moreover, the obtained RGO was highly biocompatible to not only colon (HT-29) and brain (U87MG) cancer cells, but was also viable towards normal cells (MRC-5). Conclusion: Besides being eco-friendly, this mushroom based approach is easily scalable and demonstrates remarkable RGO stability and biocompatibility, even without any form of

164 citations

Journal ArticleDOI
TL;DR: After a half century, FIP remains one of the last important infections of cats for which there is no single diagnostic test, no vaccine and no definitive explanations for how virus and host interact to cause disease.
Abstract: Feline infectious peritonitis (FIP) continues to be one of the most researched infectious diseases of cats. The relatively high mortality of FIP, especially for younger cats from catteries and shelters, should be reason enough to stimulate such intense interest. However, it is the complexity of the disease and the grudging manner in which it yields its secrets that most fascinate researchers. Feline leukemia virus infection was conquered in less than two decades and the mysteries of feline immunodeficiency virus were largely unraveled in several years. After a half century, FIP remains one of the last important infections of cats for which we have no single diagnostic test, no vaccine and no definitive explanations for how virus and host interact to cause disease. How can a ubiquitous and largely non-pathogenic enteric coronavirus transform into a highly lethal pathogen? What are the interactions between host and virus that determine both disease form (wet or dry) and outcome (death or resistance)? Why is it so difficult, and perhaps impossible, to develop a vaccine for FIP? What role do genetics play in disease susceptibility? This review will explore research conducted over the last 5 years that attempts to answer these and other questions. Although much has been learned about FIP in the last 5 years, the ultimate answers remain for yet more studies.

161 citations