scispace - formally typeset
Search or ask a question
Author

Nedim Srndic

Other affiliations: University of Sarajevo
Bio: Nedim Srndic is an academic researcher from University of Tübingen. The author has contributed to research in topics: Malware & Adversarial machine learning. The author has an hindex of 5, co-authored 8 publications receiving 2337 citations. Previous affiliations of Nedim Srndic include University of Sarajevo.

Papers
More filters
Book ChapterDOI
23 Sep 2013
TL;DR: This work presents a simple but effective gradient-based approach that can be exploited to systematically assess the security of several, widely-used classification algorithms against evasion attacks.
Abstract: In security-sensitive applications, the success of machine learning depends on a thorough vetting of their resistance to adversarial data. In one pertinent, well-motivated attack scenario, an adversary may attempt to evade a deployed system at test time by carefully manipulating attack samples. In this work, we present a simple but effective gradient-based approach that can be exploited to systematically assess the security of several, widely-used classification algorithms against evasion attacks. Following a recently proposed framework for security evaluation, we simulate attack scenarios that exhibit different risk levels for the classifier by increasing the attacker's knowledge of the system and her ability to manipulate attack samples. This gives the classifier designer a better picture of the classifier performance under evasion attacks, and allows him to perform a more informed model selection (or parameter setting). We evaluate our approach on the relevant security task of malware detection in PDF files, and show that such systems can be easily evaded. We also sketch some countermeasures suggested by our analysis.

1,667 citations

Book ChapterDOI
TL;DR: In this paper, the authors present a simple but effective gradient-based approach that can be exploited to systematically assess the security of several, widely-used classification algorithms against evasion attacks.
Abstract: In security-sensitive applications, the success of machine learning depends on a thorough vetting of their resistance to adversarial data. In one pertinent, well-motivated attack scenario, an adversary may attempt to evade a deployed system at test time by carefully manipulating attack samples. In this work, we present a simple but effective gradient-based approach that can be exploited to systematically assess the security of several, widely-used classification algorithms against evasion attacks. Following a recently proposed framework for security evaluation, we simulate attack scenarios that exhibit different risk levels for the classifier by increasing the attacker's knowledge of the system and her ability to manipulate attack samples. This gives the classifier designer a better picture of the classifier performance under evasion attacks, and allows him to perform a more informed model selection (or parameter setting). We evaluate our approach on the relevant security task of malware detection in PDF files, and show that such systems can be easily evaded. We also sketch some countermeasures suggested by our analysis.

937 citations

Proceedings Article
01 Jan 2013
TL;DR: This paper proposes a highly performant static method for detection of malicious PDF documents which, instead of analyzing JavaScript or any other content, makes use of essential differences in the structural properties of malicious and benign PDF files.
Abstract: Malicious PDF files remain a real threat, in practice, to masses of computer users, even after several high-profile security incidents. In spite of a series of a security patches issued by Adobe and other vendors, many users still have vulnerable client software installed on their computers. The expressiveness of the PDF format, furthermore, enables attackers to evade detection with little effort. Apart from traditional antivirus products, which are always a step behind attackers, few methods are known that can be deployed for protection of end-user systems. In this paper, we propose a highly performant static method for detection of malicious PDF documents which, instead of analyzing JavaScript or any other content, makes use of essential differences in the structural properties of malicious and benign PDF files. We demonstrate its effectiveness on a data corpus containing about 660,000 real-world malicious and benign PDF files, both in laboratory conditions and during a 10-week operational deployment with weekly retraining. Additionally, we present the first comparative evaluation of several learning setups with regard to resistance against adversarial evasion and show that our method is reasonably resistant to sophisticated attack scenarios.

166 citations

Proceedings ArticleDOI
05 Dec 2011
TL;DR: This contribution presents a technique for detection of JavaScript-bearing malicious PDF documents based on static analysis of extracted JavaScript code that has proved to be effective against both known and unknown malware and suitable for large-scale batch processing.
Abstract: Despite the recent security improvements in Adobe's PDF viewer, its underlying code base remains vulnerable to novel exploits. A steady flow of rapidly evolving PDF malware observed in the wild substantiates the need for novel protection instruments beyond the classical signature-based scanners. In this contribution we present a technique for detection of JavaScript-bearing malicious PDF documents based on static analysis of extracted JavaScript code. Compared to previous work, mostly based on dynamic analysis, our method incurs an order of magnitude lower run-time overhead and does not require special instrumentation. Due to its efficiency we were able to evaluate it on an extremely large real-life dataset obtained from the VirusTotal malware upload portal. Our method has proved to be effective against both known and unknown malware and suitable for large-scale batch processing.

154 citations

Proceedings ArticleDOI
04 Dec 2009
TL;DR: A Parallel Genetic Algorithm (PGA) is proposed with specific methods for chromosome representation and fitness evaluation, and specific recombination and mutation operators, suitable for execution on a Beowulf cluster.
Abstract: This paper describes the application of a Parallel Genetic Algorithm that solves the weekly timetable construction problem for elementary schools. Timetable construction is NP-complete and highly constrained problem, and therefore represents a computationally intensive task. A Parallel Genetic Algorithm (PGA) is proposed with specific methods for chromosome representation and fitness evaluation, and specific recombination and mutation operators. The proposed solution uses a coarse grained PGA, which is suitable for execution on a Beowulf cluster. Experimental results are provided, with a comparison of serial and parallel execution times for the same algorithm.

7 citations


Cited by
More filters
Posted Content
TL;DR: This work studies the adversarial robustness of neural networks through the lens of robust optimization, and suggests the notion of security against a first-order adversary as a natural and broad security guarantee.
Abstract: Recent work has demonstrated that deep neural networks are vulnerable to adversarial examples---inputs that are almost indistinguishable from natural data and yet classified incorrectly by the network. In fact, some of the latest findings suggest that the existence of adversarial attacks may be an inherent weakness of deep learning models. To address this problem, we study the adversarial robustness of neural networks through the lens of robust optimization. This approach provides us with a broad and unifying view on much of the prior work on this topic. Its principled nature also enables us to identify methods for both training and attacking neural networks that are reliable and, in a certain sense, universal. In particular, they specify a concrete security guarantee that would protect against any adversary. These methods let us train networks with significantly improved resistance to a wide range of adversarial attacks. They also suggest the notion of security against a first-order adversary as a natural and broad security guarantee. We believe that robustness against such well-defined classes of adversaries is an important stepping stone towards fully resistant deep learning models. Code and pre-trained models are available at this https URL and this https URL.

5,789 citations

Book ChapterDOI
08 Jul 2016
TL;DR: It is found that a large fraction of adversarial examples are classified incorrectly even when perceived through the camera, which shows that even in physical world scenarios, machine learning systems are vulnerable to adversarialExamples.
Abstract: Most existing machine learning classifiers are highly vulnerable to adversarial examples. An adversarial example is a sample of input data which has been modified very slightly in a way that is intended to cause a machine learning classifier to misclassify it. In many cases, these modifications can be so subtle that a human observer does not even notice the modification at all, yet the classifier still makes a mistake. Adversarial examples pose security concerns because they could be used to perform an attack on machine learning systems, even if the adversary has no access to the underlying model. Up to now, all previous work have assumed a threat model in which the adversary can feed data directly into the machine learning classifier. This is not always the case for systems operating in the physical world, for example those which are using signals from cameras and other sensors as an input. This paper shows that even in such physical world scenarios, machine learning systems are vulnerable to adversarial examples. We demonstrate this by feeding adversarial images obtained from cell-phone camera to an ImageNet Inception classifier and measuring the classification accuracy of the system. We find that a large fraction of adversarial examples are classified incorrectly even when perceived through the camera.

3,776 citations

Proceedings ArticleDOI
21 Mar 2016
TL;DR: This work formalizes the space of adversaries against deep neural networks (DNNs) and introduces a novel class of algorithms to craft adversarial samples based on a precise understanding of the mapping between inputs and outputs of DNNs.
Abstract: Deep learning takes advantage of large datasets and computationally efficient training algorithms to outperform other approaches at various machine learning tasks. However, imperfections in the training phase of deep neural networks make them vulnerable to adversarial samples: inputs crafted by adversaries with the intent of causing deep neural networks to misclassify. In this work, we formalize the space of adversaries against deep neural networks (DNNs) and introduce a novel class of algorithms to craft adversarial samples based on a precise understanding of the mapping between inputs and outputs of DNNs. In an application to computer vision, we show that our algorithms can reliably produce samples correctly classified by human subjects but misclassified in specific targets by a DNN with a 97% adversarial success rate while only modifying on average 4.02% of the input features per sample. We then evaluate the vulnerability of different sample classes to adversarial perturbations by defining a hardness measure. Finally, we describe preliminary work outlining defenses against adversarial samples by defining a predictive measure of distance between a benign input and a target classification.

3,114 citations

Journal ArticleDOI
TL;DR: In this paper, a taxonomy of recent contributions related to explainability of different machine learning models, including those aimed at explaining Deep Learning methods, is presented, and a second dedicated taxonomy is built and examined in detail.

2,827 citations

Proceedings ArticleDOI
02 Apr 2017
TL;DR: This work introduces the first practical demonstration of an attacker controlling a remotely hosted DNN with no such knowledge, and finds that this black-box attack strategy is capable of evading defense strategies previously found to make adversarial example crafting harder.
Abstract: Machine learning (ML) models, e.g., deep neural networks (DNNs), are vulnerable to adversarial examples: malicious inputs modified to yield erroneous model outputs, while appearing unmodified to human observers. Potential attacks include having malicious content like malware identified as legitimate or controlling vehicle behavior. Yet, all existing adversarial example attacks require knowledge of either the model internals or its training data. We introduce the first practical demonstration of an attacker controlling a remotely hosted DNN with no such knowledge. Indeed, the only capability of our black-box adversary is to observe labels given by the DNN to chosen inputs. Our attack strategy consists in training a local model to substitute for the target DNN, using inputs synthetically generated by an adversary and labeled by the target DNN. We use the local substitute to craft adversarial examples, and find that they are misclassified by the targeted DNN. To perform a real-world and properly-blinded evaluation, we attack a DNN hosted by MetaMind, an online deep learning API. We find that their DNN misclassifies 84.24% of the adversarial examples crafted with our substitute. We demonstrate the general applicability of our strategy to many ML techniques by conducting the same attack against models hosted by Amazon and Google, using logistic regression substitutes. They yield adversarial examples misclassified by Amazon and Google at rates of 96.19% and 88.94%. We also find that this black-box attack strategy is capable of evading defense strategies previously found to make adversarial example crafting harder.

2,712 citations