scispace - formally typeset
Search or ask a question
Author

Nedjma Bendiab

Bio: Nedjma Bendiab is an academic researcher from University of Grenoble. The author has contributed to research in topics: Graphene & Raman spectroscopy. The author has an hindex of 25, co-authored 75 publications receiving 2048 citations. Previous affiliations of Nedjma Bendiab include Pierre-and-Marie-Curie University & University of Montpellier.


Papers
More filters
Journal ArticleDOI
TL;DR: A simple theoretical model is proposed to explain the structural transition between fully suspended and collapsed graphene and offers a platform to tailor stress in graphene layers and opens perspectives for electron transport and nanomechanical applications.
Abstract: We investigate the organized formation of strain, ripples, and suspended features in macroscopic graphene sheets transferred onto corrugated substrates made of an ordered array of silica pillars with variable geometries. Depending on the pitch and sharpness of the corrugated array, graphene can conformally coat the surface, partially collapse, or lie fully suspended between pillars in a fakir-like fashion over tens of micrometers. With increasing pillar density, ripples in collapsed films display a transition from random oriented pleats emerging from pillars to organized domains of parallel ripples linking pillars, eventually leading to suspended tent-like features. Spatially resolved Raman spectroscopy, atomic force microscopy, and electronic microscopy reveal uniaxial strain domains in the transferred graphene, which are induced and controlled by the geometry. We propose a simple theoretical model to explain the structural transition between fully suspended and collapsed graphene. For the arrays of high...

139 citations

Journal ArticleDOI
TL;DR: Li-doped films with controlled stoichiometries were prepared by performing redox reactions between single-wall carbon nanotubes thin films and solutions of organic radical anions as mentioned in this paper.
Abstract: Li-doped films with controlled stoichiometries were prepared by performing redox reactions between single-wall carbon nanotubes thin films and solutions of organic radical anions. A monotonic upshift of the tangential modes is evidenced for ${\mathrm{Li}}_{x}\mathrm{C}$ compounds $(0l~xl~0.17).$ A similar doping dependence of the Raman profile is observed for vapor-phase Rb-doped samples. This universal behavior of the doping-induced upshift of the tangential modes is concomitant to a loss of absorption bands in the optical spectra and to a monotonic increase of the conductivity.

117 citations

Journal ArticleDOI
TL;DR: The results suggest that if environmental contamination occurs and MWCNTs are in the same physico-chemical state than the ones used in the present article, M WCNT transfer to the food chain via food crops would be very low.

117 citations

Journal ArticleDOI
TL;DR: In this paper, the organized formation of strain, ripples and suspended features in macroscopic CVD-prepared graphene sheets transferred onto a corrugated substrate made of an ordered arrays of silica pillars of variable geometries was investigated.
Abstract: We investigate the organized formation of strain, ripples and suspended features in macroscopic CVD-prepared graphene sheets transferred onto a corrugated substrate made of an ordered arrays of silica pillars of variable geometries. Depending on the aspect ratio and sharpness of the corrugated array, graphene can conformally coat the surface, partially collapse, or lay, fakir-like, fully suspended between pillars over tens of micrometers. Upon increase of pillar density, ripples in collapsed films display a transition from random oriented pleats emerging from pillars to ripples linking nearest neighboring pillars organized in domains of given orientation. Spatially-resolved Raman spectroscopy, atomic force microscopy and electronic microscopy reveal uniaxial strain domains in the transferred graphene, which are induced and controlled by the geometry. We propose a simple theoretical model to explain the transition between suspended and collapsed graphene. For the arrays with high aspect ratio pillars, graphene membranes stays suspended over macroscopic distances with minimal interaction with pillars tip apex. It offers a platform to tailor stress in graphene layers and open perspectives for electron transport and nanomechanical applications.

113 citations

Journal ArticleDOI
TL;DR: In this paper, the authors performed high pressure resonant Raman experiments on single-wall carbon nanotubes with argon as pressure transmitting medium and found no clear sign of phase transformation up to the highest studied pressure.
Abstract: We performed high pressure resonant Raman experiments on well characterized purified single-wall carbon nanotubes up to $40\phantom{\rule{0.3em}{0ex}}\mathrm{GPa}$ using argon as pressure transmitting medium. We used two different excitating wavelengths, at $632.8\phantom{\rule{0.3em}{0ex}}\mathrm{nm}$ and $514.5\phantom{\rule{0.3em}{0ex}}\mathrm{nm}$. In contrast with other studies no clear sign of phase transformation is observed up to the highest studied pressure of $40\phantom{\rule{0.3em}{0ex}}\mathrm{GPa}$. Our results suggest that the progressive disappearance of the radial breathing modes observed while increasing pressure should not be interpreted as the sign of a structural phase transition. Moreover, a progressive change of profile of the tangential modes is observed. For pressures higher than $20\phantom{\rule{0.3em}{0ex}}\mathrm{GPa}$ the profile of those modes is the same for both laser excitations. We conclude that a progressive loss of resonance of single-wall carbon nanotubes under pressure might occur. In addition, after high pressure cycle we observed a decrease of intensity of the radial breathing and tangential modes and a strong increase of the $D$ band.

99 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The status of graphene research is presented, which includes aspects related to synthesis, characterization, structure, and properties.
Abstract: Every few years, a new material with unique properties emerges and fascinates the scientific community, typical recent examples being high-temperature superconductors and carbon nanotubes. Graphene is the latest sensation with unusual properties, such as half-integer quantum Hall effect and ballistic electron transport. This two-dimensional material which is the parent of all graphitic carbon forms is strictly expected to comprise a single layer, but there is considerable interest in investigating two-layer and few-layer graphenes as well. Synthesis and characterization of graphenes pose challenges, but there has been considerable progress in the last year or so. Herein, we present the status of graphene research which includes aspects related to synthesis, characterization, structure, and properties.

3,513 citations

Journal ArticleDOI
TL;DR: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,† Vimlesh Chandra, Namdong Kim, K. Kim,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim.
Abstract: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,‡ Vimlesh Chandra, Namdong Kim, K. Christian Kemp, Pavel Hobza,‡,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim* †Institute of Materials Science, NCSR “Demokritos”, Ag. Paraskevi Attikis, 15310 Athens, Greece ‡Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Namgu, Pohang 790-784, Korea Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo naḿ. 2, 166 10 Prague 6, Czech Republic

3,460 citations

Journal ArticleDOI
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

2,560 citations

Journal ArticleDOI
TL;DR: An overview of the advancement of research in graphene, in the area of synthesis, properties and applications, such as field emission, sensors, electronics, and energy is presented in this paper.
Abstract: Graphene, one-atom-thick planar sheet of carbon atoms densely packed in a honeycomb crystal lattice, has grabbed appreciable attention due to its exceptional electronic and optoelectronic properties. The reported properties and applications of this two-dimensional form of carbon structure have opened up new opportunities for the future devices and systems. Although graphene is known as one of the best electronic materials, synthesizing single sheet of graphene has been less explored. This review article aims to present an overview of the advancement of research in graphene, in the area of synthesis, properties and applications, such as field emission, sensors, electronics, and energy. Wherever applicable, the limitations of present knowledgebase and future research directions have also been highlighted.

1,417 citations

Journal ArticleDOI
TL;DR: In this paper, the authors address the nature of these height fluctuations by means of straightforward atomistic Monte Carlo simulations based on a very accurate many-body interatomic potential for carbon and find that ripples spontaneously appear due to thermal fluctuations with a size distribution peaked around 70 \AA which is compatible with experimental findings (50-100 \AA) but not with the current understanding of flexible membranes.
Abstract: The stability of two-dimensional (2D) layers and membranes is subject of a long standing theoretical debate. According to the so called Mermin-Wagner theorem, long wavelength fluctuations destroy the long-range order for 2D crystals. Similarly, 2D membranes embedded in a 3D space have a tendency to be crumpled. These dangerous fluctuations can, however, be suppressed by anharmonic coupling between bending and stretching modes making that a two-dimensional membrane can exist but should present strong height fluctuations. The discovery of graphene, the first truly 2D crystal and the recent experimental observation of ripples in freely hanging graphene makes these issues especially important. Beside the academic interest, understanding the mechanisms of stability of graphene is crucial for understanding electronic transport in this material that is attracting so much interest for its unusual Dirac spectrum and electronic properties. Here we address the nature of these height fluctuations by means of straightforward atomistic Monte Carlo simulations based on a very accurate many-body interatomic potential for carbon. We find that ripples spontaneously appear due to thermal fluctuations with a size distribution peaked around 70 \AA which is compatible with experimental findings (50-100 \AA) but not with the current understanding of stability of flexible membranes. This unexpected result seems to be due to the multiplicity of chemical bonding in carbon.

1,367 citations