scispace - formally typeset
Search or ask a question
Author

Neeraj Mishra

Other affiliations: Central University, India
Bio: Neeraj Mishra is an academic researcher from Dr. Hari Singh Gour University. The author has contributed to research in topics: Liposome & Drug delivery. The author has an hindex of 24, co-authored 59 publications receiving 1941 citations. Previous affiliations of Neeraj Mishra include Central University, India.


Papers
More filters
Journal ArticleDOI
TL;DR: The comparative study conducted on methotrexate (MTX)-bearing SLNs revealed that the formulation based on Compritol 888 ATO could noticeably improve the oral bioavailability of MTX, presumably following SLNs constituting lipid digestion and co-absorption through lymphatic transport and route.

236 citations

Journal ArticleDOI
TL;DR: The study signifies the potential of chitosan nanoparticles as DNA vaccine carrier and adjuvant for effective immunization through non-invasive nasal route.

133 citations

Journal ArticleDOI
TL;DR: The results suggest that HBsAg can be successfully stabilized by co-encapsulation of protein stabilizers and could be a promising carrier-adjuvant for the targeted oral-mucosal immunization.
Abstract: The transcytotic capability and expression of distinct carbohydrate receptors on the intestinal M-cells render it a potential portal for the targeted oral vaccine delivery. PLGA nanoparticles loaded with HBsAg were developed and antigen was stabilized by co-encapsulation of trehalose and Mg(OH)(2). Additionally, Ulex europaeus 1 (UEA-1) lectin was anchored to the nanoparticles to target them to M-cells of the peye's patches. The developed systems was characterized for shape, size, polydispersity index and loading efficiency. Bovine submaxillary mucin (BSM) was used as a biological model for the in vitro determination of lectin activity and specificity. The targeting potential of the lectinized nanoparticles were determined by Confocal Laser Scanning Microscopy (CLSM) using dual staining technique. The immune stimulating potential was determined by measuring the anti-HBsAg titre in the serum of Balb/c mice orally immunized with various lectinized formulations and immune response was compared with the alum-HBsAg given intramuscularly. Induction of the mucosal immunity was assessed by estimating secretary IgA (sIgA) level in the salivary, intestinal and vaginal secretion. Additionally, cytokines (interleukin-2; IL-2 and interferon-gamma; IFN-gamma) level in the spleen homogenates was also determined. The results suggest that HBsAg can be successfully stabilized by co-encapsulation of protein stabilizers. The lectinized nanoparticles have demonstrated approximately 4-fold increase in the degree of interaction with the BSM as compared to plain nanoparticles and sugar specificity of the lectinized nanoparticles was also maintained. CLSM showed that lectinized nanoparticles were predominantly associated to M-cells. The serum anti-HBsAg titre obtained after oral immunization with HBsAg loaded stabilized lectinized nanoparticles was comparable with the titre recorded after alum-HBsAg given intramuscularly. The stabilized UEA-1 coupled nanopartilces exhibited enhanced immune response as compared to stabilized non-lectinized nanoparticles. Furthermore, the stabilized lectinized nanoparticles elicited sIgA in the mucosal secretion and IL-2 and IFN-gamma in the spleen homogenates. These stabilized lectinized nanoparticles could be a promising carrier-adjuvant for the targeted oral-mucosal immunization.

131 citations

Journal ArticleDOI
24 Apr 2008-Vaccine
TL;DR: Following intranasal administration, glycol chitosan coated liposomes elicited humoral mucosal and cellular immune responses that were significant as compared to naked DNA justifying the potential advantage of mucosal vaccination in the production of local antibodies at the sites where pathogens enters the body.

111 citations

Journal ArticleDOI
TL;DR: The main goal of this article is to explore the role of microparticles in ulcerative colitis for the appropriate targeting of drugs to colon and find microparticulate systems seem to be a promising approach for controlled and sustained drug release after oral administration.
Abstract: Ulcerative colitis is the chronic relapsing multifactorial gastrointestinal inflammatory bowel disease, which is characterized by bloody or mucus diarrhea, tenesmus, bowel dystension, anemia. The annual incidence of ulcerative colitis in Asia, North America and Europe was found to be 6.3, 19.2 and 24.3 per 100,000 person-years. The major challenge in the treatment of ulcerative colitis is appropriate local targeting and drug related side-effects. To overcome these challenges, microparticulate systems seem to be a promising approach for controlled and sustained drug release after oral administration. The main goal of this article is to explore the role of microparticles in ulcerative colitis for the appropriate targeting of drugs to colon. There are different approaches which have been studied over the last decade, including prodrugs, polymeric approach, time released system, pH sensitive system, which show the site specific drug delivery to colon. Among these approaches, microparticulate drug delivery system has been gaining an immense importance for local targeting of drug to colon at a controlled and sustained rate. Combined approaches such as pH dependent and time dependent system provide the maximum release of drug into colon via oral route. This article embraces briefly about pathophysiology, challenges and polymeric approaches mainly multiparticulate systems for site specific drug delivery to colon in sustained and controlled manner so that drug related side-effects by reducing dosage frequency can be minimized.

109 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The chemical structure and relevant biological properties of chitosan for regenerative medicine have been summarized as well as the methods for the preparation of controlled drug release devices and their applications.

2,312 citations

Journal ArticleDOI
TL;DR: This review summarizes the most recent advances in the field over the past 4 years, specifically highlighting new and interesting discoveries in tissue engineering and drug delivery applications.
Abstract: Utilization of polymers as biomaterials has greatly impacted the advancement of modern medicine. Specifically, polymeric biomaterials that are biodegradable provide the significant advantage of being able to be broken down and removed after they have served their function. Applications are wide ranging with degradable polymers being used clinically as surgical sutures and implants. In order to fit functional demand, materials with desired physical, chemical, biological, biomechanical and degradation properties must be selected. Fortunately, a wide range of natural and synthetic degradable polymers has been investigated for biomedical applications with novel materials constantly being developed to meet new challenges. This review summarizes the most recent advances in the field over the past 4 years, specifically highlighting new and interesting discoveries in tissue engineering and drug delivery applications.

1,712 citations

Journal ArticleDOI
TL;DR: Hydrogel nanoparticles have gained considerable attention in recent years as one of the most promising nanoparticulate drug delivery systems owing to their unique potentials via combining the characteristics of a hydrogel system with a nanoparticle, each with its own advantages and drawbacks.

1,704 citations

01 Jan 2016
TL;DR: Methods Of Enzymatic Analysis is universally compatible behind any devices to read, and in the authors' digital library an online admission to it is set as public appropriately so you can download it instantly.
Abstract: Rather than enjoying a fine ebook as soon as a mug of coffee in the afternoon, instead they juggled when some harmful virus inside their computer. Methods Of Enzymatic Analysis is clear in our digital library an online admission to it is set as public appropriately you can download it instantly. Our digital library saves in complex countries, allowing you to get the most less latency period to download any of our books considering this one. Merely said, the Methods Of Enzymatic Analysis is universally compatible behind any devices to read.

1,136 citations

Journal ArticleDOI
TL;DR: More recent successes of applying PLGA-based nanotechnologies and tools in medicine-related applications are presented and the possible mechanisms, diagnosis and treatment effects of PLGA preparations and devices are focused on.
Abstract: Co-polymer poly(lactic-co-glycolic acid) (PLGA) nanotechnology has been developed for many years and has been approved by the US FDA for the use of drug delivery, diagnostics and other applications of clinical and basic science research, including cardiovascular disease, cancer, vaccine and tissue engineering. This article presents the more recent successes of applying PLGA-based nanotechnologies and tools in these medicine-related applications. It focuses on the possible mechanisms, diagnosis and treatment effects of PLGA preparations and devices. This updated information will benefit to both new and established research scientists and clinical physicians who are interested in the development and application of PLGA nanotechnology as new therapeutic and diagnostic strategies for many diseases.

737 citations