scispace - formally typeset
Search or ask a question
Author

Nehemias Castellanos-Hernandez

Bio: Nehemias Castellanos-Hernandez is an academic researcher. The author has contributed to research in topics: Pilot plant & Anaerobic digestion. The author has an hindex of 1, co-authored 1 publications receiving 1287 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Results suggest some changes to the pilot plant configuration are necessary to reduce power consumption although maximizing biodigester performance, and a modification of the typical continuous stirred tank reactor is a promising process being relatively stable and owing to its capability to manage considerable amounts of residuals at low operational cost.
Abstract: Intensive poultry production generates over 100,000 t of litter annually in West Virginia and 9×106 t nationwide. Current available technological alternatives based on thermophilic anaerobic digestion for residuals treatment are diverse. A modification of the typical continuous stirred tank reactor is a promising process being relatively stable and owing to its capability to manage considerable amounts of residuals at low operational cost. A 40-m3 pilot plant digester was used for performance evaluation considering energy input and methane production. Results suggest some changes to the pilot plant configuration are necessary to reduce power consumption although maximizing biodigester performance.

1,287 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the different types of scaffolds with their material properties is discussed and the fabrication technologies for tissue engineering scaffolds, including the basic and conventional techniques to the more recent ones, are tabulated.
Abstract: Current strategies of regenerative medicine are focused on the restoration of pathologically altered tissue architectures by transplantation of cells in combination with supportive scaffolds and biomolecules. In recent years, considerable interest has been given to biologically active scaffolds which are based on similar analogs of the extracellular matrix that have induced synthesis of tissues and organs. To restore function or regenerate tissue, a scaffold is necessary that will act as a temporary matrix for cell proliferation and extracellular matrix deposition, with subsequent ingrowth until the tissues are totally restored or regenerated. Scaffolds have been used for tissue engineering such as bone, cartilage, ligament, skin, vascular tissues, neural tissues, and skeletal muscle and as vehicle for the controlled delivery of drugs, proteins, and DNA. Various technologies come together to construct porous scaffolds to regenerate the tissues/organs and also for controlled and targeted release of bioactive agents in tissue engineering applications. In this paper, an overview of the different types of scaffolds with their material properties is discussed. The fabrication technologies for tissue engineering scaffolds, including the basic and conventional techniques to the more recent ones, are tabulated.

1,480 citations

Journal ArticleDOI
TL;DR: Different leading pretreatment technologies are reviewed along with their latest developments and their advantages and disadvantages with respect to subsequent hydrolysis and fermentation with a focus on how the treatment greatly enhances enzymatic cellulose digestibility.
Abstract: Overcoming the recalcitrance (resistance of plant cell walls to deconstruction) of lignocellulosic biomass is a key step in the production of fuels and chemicals. The recalcitrance is due to the highly crystalline structure of cellulose which is embedded in a matrix of polymers-lignin and hemicellulose. The main goal of pretreatment is to overcome this recalcitrance, to separate the cellulose from the matrix polymers, and to make it more accessible for enzymatic hydrolysis. Reports have shown that pretreatment can improve sugar yields to higher than 90% theoretical yield for biomass such as wood, grasses, and corn. This paper reviews different leading pretreatment technologies along with their latest developments and highlights their advantages and disadvantages with respect to subsequent hydrolysis and fermentation. The effects of different technologies on the components of biomass (cellulose, hemicellulose, and lignin) are also reviewed with a focus on how the treatment greatly enhances enzymatic cellulose digestibility.

810 citations

Journal ArticleDOI
TL;DR: In this paper, the surface modification of cellulose fibers by various methods is reviewed and the processing methods, properties, and various applications of nanocellulose and cellulosic composites are also discussed.
Abstract: Cellulose macro- and nanofibers have gained increasing attention due to the high strength and stiffness, biodegradability and renewability, and their production and application in development of composites. Application of cellulose nanofibers for the development of composites is a relatively new research area. Cellulose macro- and nanofibers can be used as reinforcement in composite materials because of enhanced mechanical, thermal, and biodegradation properties of composites. Cellulose fibers are hydrophilic in nature, so it becomes necessary to increase their surface roughness for the development of composites with enhanced properties. In the present paper, we have reviewed the surface modification of cellulose fibers by various methods. Processing methods, properties, and various applications of nanocellulose and cellulosic composites are also discussed in this paper.

685 citations

Journal ArticleDOI
TL;DR: This review attempts to provide descriptive information on the enzymes from various microorganisms involved in the biodegradation of wide range of pollutants, applications, and suggestions required to overcome the limitations of their efficient use.
Abstract: A large number of enzymes from bacteria, fungi, and plants have been reported to be involved in the biodegradation of toxic organic pollutants. Bioremediation is a cost effective and nature friendly biotechnology that is powered by microbial enzymes. The research activity in this area would contribute towards developing advanced bioprocess technology to reduce the toxicity of the pollutants and also to obtain novel useful substances. The information on the mechanisms of bioremediation-related enzymes such as oxido-reductases and hydrolases have been extensively studied. This review attempts to provide descriptive information on the enzymes from various microorganisms involved in the biodegradation of wide range of pollutants, applications, and suggestions required to overcome the limitations of their efficient use.

580 citations