scispace - formally typeset
Search or ask a question
Author

Neil Genzlinger

Bio: Neil Genzlinger is an academic researcher. The author has contributed to research in topics: Robbing & Graphic design. The author has an hindex of 4, co-authored 6 publications receiving 9093 citations.
Topics: Robbing, Graphic design, Ogden, Empire, Hatred

Papers
More filters
Journal Article

11,116 citations

Journal Article
TL;DR: The best book to read today is the biography of honey the sweet liquid gold that seduced the world that will be your best choice for better reading book as discussed by the authors, this is it, the robber the bees a biography of bees a book to rob the bees.
Abstract: Give us 5 minutes and we will show you the best book to read today. This is it, the robbing the bees a biography of honey the sweet liquid gold that seduced the world that will be your best choice for better reading book. Your five times will not spend wasted by reading this website. You can take the book as a source to make better concept. Referring the books that can be situated with your needs is sometime difficult. But here, this is so easy. You can find the best thing of book that you can read.

8 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A critical review of the synthesis methods for graphene and its derivatives as well as their properties and the advantages of graphene-based composites in applications such as the Li-ion batteries, supercapacitors, fuel cells, photovoltaic devices, photocatalysis, and Raman enhancement are described.
Abstract: Graphene has attracted tremendous research interest in recent years, owing to its exceptional properties. The scaled-up and reliable production of graphene derivatives, such as graphene oxide (GO) and reduced graphene oxide (rGO), offers a wide range of possibilities to synthesize graphene-based functional materials for various applications. This critical review presents and discusses the current development of graphene-based composites. After introduction of the synthesis methods for graphene and its derivatives as well as their properties, we focus on the description of various methods to synthesize graphene-based composites, especially those with functional polymers and inorganic nanostructures. Particular emphasis is placed on strategies for the optimization of composite properties. Lastly, the advantages of graphene-based composites in applications such as the Li-ion batteries, supercapacitors, fuel cells, photovoltaic devices, photocatalysis, as well as Raman enhancement are described (279 references).

3,340 citations

Posted Content
TL;DR: A comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management and recent standardization efforts on MEC are introduced.
Abstract: Driven by the visions of Internet of Things and 5G communications, recent years have seen a paradigm shift in mobile computing, from the centralized Mobile Cloud Computing towards Mobile Edge Computing (MEC). The main feature of MEC is to push mobile computing, network control and storage to the network edges (e.g., base stations and access points) so as to enable computation-intensive and latency-critical applications at the resource-limited mobile devices. MEC promises dramatic reduction in latency and mobile energy consumption, tackling the key challenges for materializing 5G vision. The promised gains of MEC have motivated extensive efforts in both academia and industry on developing the technology. A main thrust of MEC research is to seamlessly merge the two disciplines of wireless communications and mobile computing, resulting in a wide-range of new designs ranging from techniques for computation offloading to network architectures. This paper provides a comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management. We also present a research outlook consisting of a set of promising directions for MEC research, including MEC system deployment, cache-enabled MEC, mobility management for MEC, green MEC, as well as privacy-aware MEC. Advancements in these directions will facilitate the transformation of MEC from theory to practice. Finally, we introduce recent standardization efforts on MEC as well as some typical MEC application scenarios.

2,289 citations

Journal ArticleDOI
TL;DR: Li et al. as mentioned in this paper provided an overview of the concept of heterojunction construction and more importantly, the current state-of-the-art for the efficient, visible-light driven junction water splitting photo(electro)catalysts reported over the past ten years.
Abstract: Solar driven catalysis on semiconductors to produce clean chemical fuels, such as hydrogen, is widely considered as a promising route to mitigate environmental issues caused by the combustion of fossil fuels and to meet increasing worldwide demands for energy. The major limiting factors affecting the efficiency of solar fuel synthesis include; (i) light absorption, (ii) charge separation and transport and (iii) surface chemical reaction; therefore substantial efforts have been put into solving these problems. In particular, the loading of co-catalysts or secondary semiconductors that can act as either electron or hole acceptors for improved charge separation is a promising strategy, leading to the adaptation of a junction architecture. Research related to semiconductor junction photocatalysts has developed very rapidly and there are a few comprehensive reviews in which the strategy is discussed (A. Kudo and Y. Miseki, Chemical Society Reviews, 2009, 38, 253–278, K. Li, D. Martin, and J. Tang, Chinese Journal of Catalysis, 2011, 32, 879–890, R. Marschall, Advanced Functional Materials, 2014, 24, 2421–2440). This critical review seeks to give an overview of the concept of heterojunction construction and more importantly, the current state-of-the art for the efficient, visible-light driven junction water splitting photo(electro)catalysts reported over the past ten years. For water splitting, these include BiVO4, Fe2O3, Cu2O and C3N4, which have attracted increasing attention. Experimental observations of the proposed charge transfer mechanism across the semiconductor/semiconductor/metal junctions and the resultant activity enhancement are discussed. In parallel, recent successes in the theoretical modelling of semiconductor electronic structures at interfaces and how these explain the functionality of the junction structures is highlighted.

1,891 citations

Journal ArticleDOI
TL;DR: The fundamental principles of energy transfer and photocatalysis are summarized and an overview of the latest progress in energy transfer, light-harvesting, photocatalytic proton and CO2 reduction, and water oxidation using MOFs is provided.
Abstract: Solar energy is an alternative, sustainable energy source for mankind. Finding a convenient way to convert sunlight energy into chemical energy is a key step towards realizing large-scale solar energy utilization. Owing to their structural regularity and synthetic tunability, metal–organic frameworks (MOFs) provide an interesting platform to hierarchically organize light-harvesting antennae and catalytic centers to achieve solar energy conversion. Such photo-driven catalytic processes not only play a critical role in the solar to chemical energy conversion scheme, but also provide a novel methodology for the synthesis of fine chemicals. In this review, we summarize the fundamental principles of energy transfer and photocatalysis and provide an overview of the latest progress in energy transfer, light-harvesting, photocatalytic proton and CO2 reduction, and water oxidation using MOFs. The applications of MOFs in organic photocatalysis and degradation of model organic pollutants are also discussed.

1,717 citations

Journal ArticleDOI
TL;DR: In this article, a review of additive manufacturing (AM) techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid-state precipitation, mechanical properties and post-processing metallurgy.
Abstract: Additive manufacturing (AM), widely known as 3D printing, is a method of manufacturing that forms parts from powder, wire or sheets in a process that proceeds layer by layer. Many techniques (using many different names) have been developed to accomplish this via melting or solid-state joining. In this review, these techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid-state precipitation, mechanical properties and post-processing metallurgy. The various metal AM techniques are compared, with analysis of the strengths and limitations of each. Only a few alloys have been developed for commercial production, but recent efforts are presented as a path for the ongoing development of new materials for AM processes.

1,713 citations