scispace - formally typeset
Search or ask a question
Author

Neil H. Grannemann

Bio: Neil H. Grannemann is an academic researcher. The author has contributed to research in topics: Oxidative stress & Dimercaptosuccinic acid. The author has an hindex of 1, co-authored 1 publications receiving 168 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Results suggest that lead-induced oxidative stress in vivo can be mitigated by pharmacologic interventions, which encompass both chelating as well as thiol-mediated antioxidant functions.

172 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review examines the sources and generation of free radicals and oxidative stress in biological systems and the mechanisms used by reactive oxygen to modulate signal transduction cascades and redirect gene expression.
Abstract: Reactive oxygen intermediates are produced in all aerobic organisms during respiration and exist in the cell in a balance with biochemical antioxidants. Excess reactive oxygen resulting from exposure to environmental oxidants, toxicants, and heavy metals perturbs cellular redox balance and disrupts normal biological functions. The resulting imbalance may be detrimental to the organism and contribute to the pathogenesis of disease and aging. To counteract the oxidant effects and to restore a state of redox balance, cells must reset critical homeostatic parameters. Changes associated with oxidative damage and with restoration of cellular homeostasis often lead to activation or silencing of genes encoding regulatory transcription factors, antioxidant defense enzymes, and structural proteins. In this review, we examine the sources and generation of free radicals and oxidative stress in biological systems and the mechanisms used by reactive oxygen to modulate signal transduction cascades and redirect gene expression.

1,075 citations

Journal ArticleDOI
TL;DR: This review provides an update of the existing chelating agents and the various strategies available for the treatment of heavy metals and metalloid intoxications.
Abstract: Chelation therapy is the preferred medical treatment for reducing the toxic effects of metals. Chelating agents are capable of binding to toxic metal ions to form complex structures which are easily excreted from the body removing them from intracellular or extracellular spaces. 2,3-Dimercaprol has long been the mainstay of chelation therapy for lead or arsenic poisoning, however its serious side effects have led researchers to develop less toxic analogues. Hydrophilic chelators like meso-2,3-dimercaptosuccinic acid effectively promote renal metal excretion, but their ability to access intracellular metals is weak. Newer strategies to address these drawbacks like combination therapy (use of structurally different chelating agents) or co-administration of antioxidants have been reported recently. In this review we provide an update of the existing chelating agents and the various strategies available for the treatment of heavy metals and metalloid intoxications.

765 citations

01 Jan 2000
TL;DR: In this paper, the importance of using antioxidants in treating lead poisoning was discussed, and the possible protective effects of antioxidants in lead toxicity were investigated. But, the authors did not consider the effect of antioxidant supplementation following lead exposure.
Abstract: Recent studies have shown that lead causes oxidative stress by inducing the generation of reactive oxygen species, reducing the antioxidant defense system of cells via depleting glutathione, inhibiting sulfhydryl-dependent enzymes, interfering with some essential metals needed for antioxidant enzyme activities, and/or increasing susceptibility of cells to oxidative attack by altering the membrane integrity and fatty acid composition. Consequently, it is plausible that impaired oxidant/antioxidant balance can be partially responsible for the toxic effects of lead. Where enhanced oxidative stress contributes to lead-induced toxicity, restoration of a cell's antioxidant capacity appears to provide a partial remedy. Several studies are underway to determine the effect of antioxidant supplementation following lead exposure. Data suggest that antioxidants may play an important role in abating some hazards of lead. To explain the importance of using antioxidants in treating lead poisoning the following topics are addressed: (i) Oxidative damage caused by lead poisoning; (ii) conventional treatment of lead poisoning and its side effects; and (iii) possible protective effects of antioxidants in lead toxicity.

536 citations

Journal ArticleDOI
TL;DR: Data suggest that antioxidants may play an important role in abating some hazards of lead, and that restoration of a cell's antioxidant capacity appears to provide a partial remedy.

524 citations