scispace - formally typeset
Search or ask a question
Author

Neil R. Gilkes

Bio: Neil R. Gilkes is an academic researcher from University of British Columbia. The author has contributed to research in topics: Cellulase & Cellulose. The author has an hindex of 58, co-authored 111 publications receiving 11475 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The beta-1, 4-glycanases appear to have arisen by the shuffling of a relatively small number of progenitor sequences, and some of the enzymes contain repeated sequences up to 150 amino acids in length.

836 citations

Book ChapterDOI
TL;DR: The chapter focuses on the recent advances in understanding the structural and functional organization of individual cellulases, their regulation, and the ways in which the multiple enzyme components of cellulolytic systems cooperate.
Abstract: Publisher Summary The chapter focuses on the recent advances in understanding the structural and functional organization of individual cellulases, their regulation, and the ways in which the multiple enzyme components of cellulolytic systems cooperate. It overviews the cellulose structures because cellulose is more than a homopolymer of β-1 ,4 linked glucose units. An appreciation of its complex physical organization and its interactions with other plant cell wall components is central for understanding of the mechanisms of cellulase action. Cellulose nearly always occurs in close association with plant cell wall matrix polysaccharides so that enzymes such as xylanases are intimately involved in the attack of cellulose in vivo. Cellulases effect important changes to their substrate before releasing soluble products and the key to understanding cellulase action rest in the examination of these events. Progress in this area is limited by the availability of appropriate analytical tools although new techniques, such as atomic force microscopy are promising. The properties of cellulases are profoundly altered by the presence of trace enzyme contaminants. Future studies in vitro are proposed to be restricted to enzymes from recombinant sources. The reasons for the individual cellulolytic bacteria and fungi requiring many related cellulases with specificities that overlap is still not clear, but perhaps this is because the complexity of the substrates and of the task these microorganisms face is underestimated.

686 citations

Journal ArticleDOI
TL;DR: This study examines the inhibition of seven cellulase preparations, three xylanase preparations and a beta-glucosidase preparation by two purified, particulate lignin preparations derived from softwood using an organosolv pretreatment process followed by enzymatic hydrolysis.

678 citations

Journal ArticleDOI
TL;DR: Regression models were developed to enable the quantitative prediction of lignin characteristics and antioxidant activity based on the processing conditions and indicated that the lignins with more phenolic hydroxyl groups, less aliphatic hydroxym groups, low molecular weight, and narrow polydispersity showed high antioxidant activity.
Abstract: Twenty-one organosolv ethanol lignin samples were prepared from hybrid poplar (Populus nigra xP. maximowiczii) under varied conditions with an experimental matrix designed using response surface methodology (RSM). The lignin preparations were evaluated as potential antioxidants. Results indicated that the lignins with more phenolic hydroxyl groups, less aliphatic hydroxyl groups, low molecular weight, and narrow polydispersity showed high antioxidant activity. Processing conditions affected the functional groups and molecular weight of the extracted organosolv ethanol lignins, and consequently influenced the antioxidant activity of the lignins. In general, the lignins prepared at elevated temperature, longer reaction time, increased catalyst, and diluted ethanol showed high antioxidant activity. Regression models were developed to enable the quantitative prediction of lignin characteristics and antioxidant activity based on the processing conditions.

579 citations

Journal ArticleDOI
TL;DR: In this paper, the Lignol process was used to extract residual lignin from mixed softwood pulp and then used for bio-convincing the cellulose to glucose and subsequent fermentation to ethanol.
Abstract: Pulps with residual lignin ranging from 6.4–27.4% (w/w) were prepared from mixed softwoods using a proprietary biorefining technology (the Lignol process) based on aqueous ethanol organosolv extraction. The pulps were evaluated for bioconversion using enzymatic hydrolysis of the cellulose fraction to glucose and subsequent fermentation to ethanol. All pulps were readily hydrolyzed without further delignification. More than 90% of the cellulose in low lignin pulps (≤18.4% residual lignin) was hydrolyzed to glucose in 48 h using an enzyme loading of 20 filter paper units/g cellulose. Cellulose in a high lignin pulp (27.4% residual lignin) was hydrolyzed to >90% conversion within 48 h using 40 filter paper units/g. The pulps performed well in both sequential and simultaneous saccharification and fermentation trials indicating an absence of metabolic inhibitors. Chemical and physical analyses showed that lignin extracted during organosolv pulping of softwood is a suitable feedstock for production of lignin-based adhesives and other products due to its high purity, low molecular weight, and abundance of reactive groups. Additional co-products may be derived from the hemicellulose sugars and furfural recovered from the water-soluble stream. © 2005 Wiley Periodicals, Inc.

543 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A concluding discussion identifies unresolved issues pertaining to microbial cellulose utilization, suggests approaches by which such issues might be resolved, and contrasts a microbially oriented cellulose hydrolysis paradigm to the more conventional enzymatically oriented paradigm in both fundamental and applied contexts.
Abstract: Fundamental features of microbial cellulose utilization are examined at successively higher levels of aggregation encompassing the structure and composition of cellulosic biomass, taxonomic diversity, cellulase enzyme systems, molecular biology of cellulase enzymes, physiology of cellulolytic microorganisms, ecological aspects of cellulase-degrading communities, and rate-limiting factors in nature. The methodological basis for studying microbial cellulose utilization is considered relative to quantification of cells and enzymes in the presence of solid substrates as well as apparatus and analysis for cellulose-grown continuous cultures. Quantitative description of cellulose hydrolysis is addressed with respect to adsorption of cellulase enzymes, rates of enzymatic hydrolysis, bioenergetics of microbial cellulose utilization, kinetics of microbial cellulose utilization, and contrasting features compared to soluble substrate kinetics. A biological perspective on processing cellulosic biomass is presented, including features of pretreated substrates and alternative process configurations. Organism development is considered for "consolidated bioprocessing" (CBP), in which the production of cellulolytic enzymes, hydrolysis of biomass, and fermentation of resulting sugars to desired products occur in one step. Two organism development strategies for CBP are examined: (i) improve product yield and tolerance in microorganisms able to utilize cellulose, or (ii) express a heterologous system for cellulose hydrolysis and utilization in microorganisms that exhibit high product yield and tolerance. A concluding discussion identifies unresolved issues pertaining to microbial cellulose utilization, suggests approaches by which such issues might be resolved, and contrasts a microbially oriented cellulose hydrolysis paradigm to the more conventional enzymatically oriented paradigm in both fundamental and applied contexts.

4,769 citations

Journal ArticleDOI
TL;DR: This paper reviews the most interesting technologies for ethanol production from lignocellulose and it points out several key properties that should be targeted for low-cost and advanced pretreatment processes.

3,580 citations

Journal ArticleDOI
TL;DR: A review of various pretreatment process methods and the recent literature that has been developed can be found in this paper, where the goal of pretreatment is to make the cellulose accessible to hydrolysis for conversion to fuels.
Abstract: Biofuels produced from various lignocellulosic materials, such as wood, agricultural, or forest residues, have the potential to be a valuable substitute for, or complement to, gasoline. Many physicochemical structural and compositional factors hinder the hydrolysis of cellulose present in biomass to sugars and other organic compounds that can later be converted to fuels. The goal of pretreatment is to make the cellulose accessible to hydrolysis for conversion to fuels. Various pretreatment techniques change the physical and chemical structure of the lignocellulosic biomass and improve hydrolysis rates. During the past few years a large number of pretreatment methods have been developed, including alkali treatment, ammonia explosion, and others. Many methods have been shown to result in high sugar yields, above 90% of the theoretical yield for lignocellulosic biomasses such as woods, grasses, corn, and so on. In this review, we discuss the various pretreatment process methods and the recent literature that...

3,450 citations

Journal ArticleDOI
TL;DR: With the steady increase in sequence and structural data, it is suggested that the enzyme classification system should perhaps be revised.
Abstract: The amino acid sequences of 301 glycosyl hydrolases and related enzymes have been compared. A total of 291 sequences corresponding to 39 EC entries could be classified into 35 families. Only ten sequences (less than 5% of the sample) could not be assigned to any family. With the sequences available for this analysis, 18 families were found to be monospecific (containing only one EC number) and 17 were found to be polyspecific (containing at least two EC numbers). Implications on the folding characteristics and mechanism of action of these enzymes and on the evolution of carbohydrate metabolism are discussed. With the steady increase in sequence and structural data, it is suggested that the enzyme classification system should perhaps be revised.

3,338 citations

Journal ArticleDOI
16 May 2014-Science
TL;DR: Recent developments in genetic engineering, enhanced extraction methods, and a deeper understanding of the structure of lignin are yielding promising opportunities for efficient conversion of this renewable resource to carbon fibers, polymers, commodity chemicals, and fuels.
Abstract: Background Lignin, nature’s dominant aromatic polymer, is found in most terrestrial plants in the approximate range of 15 to 40% dry weight and provides structural integrity. Traditionally, most large-scale industrial processes that use plant polysaccharides have burned lignin to generate the power needed to productively transform biomass. The advent of biorefineries that convert cellulosic biomass into liquid transportation fuels will generate substantially more lignin than necessary to power the operation, and therefore efforts are underway to transform it to value-added products. Production of biofuels from cellulosic biomass requires separation of large quantities of the aromatic polymer lignin. In planta genetic engineering, enhanced extraction methods, and a deeper understanding of the structure of lignin are yielding promising opportunities for efficient conversion of this renewable resource to carbon fibers, polymers, commodity chemicals, and fuels. [Credit: Oak Ridge National Laboratory, U.S. Department of Energy] Advances Bioengineering to modify lignin structure and/or incorporate atypical components has shown promise toward facilitating recovery and chemical transformation of lignin under biorefinery conditions. The flexibility in lignin monomer composition has proven useful for enhancing extraction efficiency. Both the mining of genetic variants in native populations of bioenergy crops and direct genetic manipulation of biosynthesis pathways have produced lignin feedstocks with unique properties for coproduct development. Advances in analytical chemistry and computational modeling detail the structure of the modified lignin and direct bioengineering strategies for targeted properties. Refinement of biomass pretreatment technologies has further facilitated lignin recovery and enables catalytic modifications for desired chemical and physical properties. Outlook Potential high-value products from isolated lignin include low-cost carbon fiber, engineering plastics and thermoplastic elastomers, polymeric foams and membranes, and a variety of fuels and chemicals all currently sourced from petroleum. These lignin coproducts must be low cost and perform as well as petroleum-derived counterparts. Each product stream has its own distinct challenges. Development of renewable lignin-based polymers requires improved processing technologies coupled to tailored bioenergy crops incorporating lignin with the desired chemical and physical properties. For fuels and chemicals, multiple strategies have emerged for lignin depolymerization and upgrading, including thermochemical treatments and homogeneous and heterogeneous catalysis. The multifunctional nature of lignin has historically yielded multiple product streams, which require extensive separation and purification procedures, but engineering plant feedstocks for greater structural homogeneity and tailored functionality reduces this challenge.

2,958 citations