scispace - formally typeset
Search or ask a question
Author

Neil Spring

Bio: Neil Spring is an academic researcher from University of Maryland, College Park. The author has contributed to research in topics: The Internet & traceroute. The author has an hindex of 38, co-authored 75 publications receiving 9693 citations. Previous affiliations of Neil Spring include University of Washington & University of California, San Diego.


Papers
More filters
Journal ArticleDOI
TL;DR: The current implementation of the NWS for Unix and TCP/IP sockets is described and examples of its performance monitoring and forecasting capabilities are provided.

1,414 citations

Proceedings ArticleDOI
19 Aug 2002
TL;DR: New Internet mapping techniques that have enabled us to directly measure router-level ISP topologies are presented, finding that these maps are substantially more complete than those of earlier Internet mapping efforts.
Abstract: To date, realistic ISP topologies have not been accessible to the research community, leaving work that depends on topology on an uncertain footing. In this paper, we present new Internet mapping techniques that have enabled us to directly measure router-level ISP topologies. Our techniques reduce the number of required traces compared to a brute-force, all-to-all approach by three orders of magnitude without a significant loss in accuracy. They include the use of BGP routing tables to focus the measurements, exploiting properties of IP routing to eliminate redundant measurements, better alias resolution, and the use of DNS to divide each map into POPs and backbone. We collect maps from ten diverse ISPs using our techniques, and find that our maps are substantially more complete than those of earlier Internet mapping efforts. We also report on properties of these maps, including the size of POPs, distribution of router outdegree, and the inter-domain peering structure. As part of this work, we release our maps to the community.

1,355 citations

Journal ArticleDOI
TL;DR: New Internet mapping techniques that have enabled us to measure router-level ISP topologies are presented, finding that these maps are substantially more complete than those of earlier Internet mapping efforts.
Abstract: To date, realistic ISP topologies have not been accessible to the research community, leaving work that depends on topology on an uncertain footing. In this paper, we present new Internet mapping techniques that have enabled us to measure router-level ISP topologies. Our techniques reduce the number of required traces compared to a brute-force, all-to-all approach by three orders of magnitude without a significant loss in accuracy. They include the use of BGP routing tables to focus the measurements, the elimination of redundant measurements by exploiting properties of IP routing, better alias resolution, and the use of DNS to divide each map into POPs and backbone. We collect maps from ten diverse ISPs using our techniques, and find that our maps are substantially more complete than those of earlier Internet mapping efforts. We also report on properties of these maps, including the size of POPs, distribution of router outdegree, and the interdomain peering structure. As part of this work, we release our maps to the community.

1,331 citations

Proceedings ArticleDOI
16 Aug 2009
TL;DR: This work presents Persona, an OSN where users dictate who may access their information, and describes an implementation of Persona that replicates Facebook applications and shows how Persona provides the functionality of existing online social networks with additional privacy benefits.
Abstract: Online social networks (OSNs) are immensely popular, with some claiming over 200 million users. Users share private content, such as personal information or photographs, using OSN applications. Users must trust the OSN service to protect personal information even as the OSN provider benefits from examining and sharing that information. We present Persona, an OSN where users dictate who may access their information. Persona hides user data with attribute-based encryption (ABE), allowing users to apply fine-grained policies over who may view their data. Persona provides an effective means of creating applications in which users, not the OSN, define policy over access to private data. We demonstrate new cryptographic mechanisms that enhance the general applicability of ABE. We show how Persona provides the functionality of existing online social networks with additional privacy benefits. We describe an implementation of Persona that replicates Facebook applications and show that Persona provides acceptable performance when browsing privacy-enhanced web pages, even on mobile devices.

605 citations

Journal ArticleDOI
TL;DR: The AppLeS (Application Level Scheduling) project provides a methodology, application software, and software environments for adaptively scheduling and deploying applications in heterogeneous, multiuser grid environments and outlines the findings.
Abstract: Ensembles of distributed, heterogeneous resources, also known as computational grids, have emerged as critical platforms for high-performance and resource-intensive applications. Such platforms provide the potential for applications to aggregate enormous bandwidth, computational power, memory, secondary storage, and other resources during a single execution. However, achieving this performance potential in dynamic, heterogeneous environments is challenging. Recent experience with distributed applications indicates that adaptivity is fundamental to achieving application performance in dynamic grid environments. The AppLeS (Application Level Scheduling) project provides a methodology, application software, and software environments for adaptively scheduling and deploying applications in heterogeneous, multiuser grid environments. We discuss the AppLeS project and outline our findings.

490 citations


Cited by
More filters
Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

Proceedings ArticleDOI
25 Oct 2008
TL;DR: This paper presents and characterizes the Princeton Application Repository for Shared-Memory Computers (PARSEC), a benchmark suite for studies of Chip-Multiprocessors (CMPs), and shows that the benchmark suite covers a wide spectrum of working sets, locality, data sharing, synchronization and off-chip traffic.
Abstract: This paper presents and characterizes the Princeton Application Repository for Shared-Memory Computers (PARSEC), a benchmark suite for studies of Chip-Multiprocessors (CMPs). Previous available benchmarks for multiprocessors have focused on high-performance computing applications and used a limited number of synchronization methods. PARSEC includes emerging applications in recognition, mining and synthesis (RMS) as well as systems applications which mimic large-scale multithreaded commercial programs. Our characterization shows that the benchmark suite covers a wide spectrum of working sets, locality, data sharing, synchronization and off-chip traffic. The benchmark suite has been made available to the public.

3,514 citations

Journal ArticleDOI
TL;DR: Recent progress about link prediction algorithms is summarized, emphasizing on the contributions from physical perspectives and approaches, such as the random-walk-based methods and the maximum likelihood methods.
Abstract: Link prediction in complex networks has attracted increasing attention from both physical and computer science communities. The algorithms can be used to extract missing information, identify spurious interactions, evaluate network evolving mechanisms, and so on. This article summaries recent progress about link prediction algorithms, emphasizing on the contributions from physical perspectives and approaches, such as the random-walk-based methods and the maximum likelihood methods. We also introduce three typical applications: reconstruction of networks, evaluation of network evolving mechanism and classification of partially labeled networks. Finally, we introduce some applications and outline future challenges of link prediction algorithms.

2,530 citations

Book ChapterDOI
06 Mar 2011
TL;DR: A new methodology for realizing Ciphertext-Policy Attribute Encryption (CP-ABE) under concrete and noninteractive cryptographic assumptions in the standard model is presented.
Abstract: We present a new methodology for realizing Ciphertext-Policy Attribute Encryption (CP-ABE) under concrete and noninteractive cryptographic assumptions in the standard model Our solutions allow any encryptor to specify access control in terms of any access formula over the attributes in the system In our most efficient system, ciphertext size, encryption, and decryption time scales linearly with the complexity of the access formula The only previous work to achieve these parameters was limited to a proof in the generic group model We present three constructions within our framework Our first system is proven selectively secure under a assumption that we call the decisional Parallel Bilinear Diffie-Hellman Exponent (PBDHE) assumption which can be viewed as a generalization of the BDHE assumption Our next two constructions provide performance tradeoffs to achieve provable security respectively under the (weaker) decisional Bilinear-Diffie-Hellman Exponent and decisional Bilinear Diffie-Hellman assumptions

1,444 citations

Posted Content
TL;DR: In this article, the authors present a new methodology for realizing Ciphertext-Policy Attribute Encryption (CP-ABE) under concrete and noninteractive cryptographic assumptions in the standard model.
Abstract: We present a new methodology for realizing Ciphertext-Policy Attribute Encryption (CP-ABE) under concrete and noninteractive cryptographic assumptions in the standard model. Our solutions allow any encryptor to specify access control in terms of any access formula over the attributes in the system. In our most efficient system, ciphertext size, encryption, and decryption time scales linearly with the complexity of the access formula. The only previous work to achieve these parameters was limited to a proof in the generic group model. We present three constructions within our framework. Our first system is proven selectively secure under a assumption that we call the decisional Parallel Bilinear Diffie-Hellman Exponent (PBDHE) assumption which can be viewed as a generalization of the BDHE assumption. Our next two constructions provide performance tradeoffs to achieve provable security respectively under the (weaker) decisional Bilinear-Diffie-Hellman Exponent and decisional Bilinear Diffie-Hellman assumptions.

1,416 citations