scispace - formally typeset
Search or ask a question
Author

Nele Moelans

Bio: Nele Moelans is an academic researcher from Katholieke Universiteit Leuven. The author has contributed to research in topics: Phase (matter) & Grain boundary. The author has an hindex of 23, co-authored 119 publications receiving 2726 citations. Previous affiliations of Nele Moelans include Lawrence Livermore National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors introduce the concept of diffuse interfaces, the phase-field variables, the thermodynamic driving force for microstructure evolution and the kinetic phasefield equations are discussed.
Abstract: The phase-field method has become an important and extremely versatile technique for simulating microstructure evolution at the mesoscale. Thanks to the diffuse-interface approach, it allows us to study the evolution of arbitrary complex grain morphologies without any presumption on their shape or mutual distribution. It is also straightforward to account for different thermodynamic driving forces for microstructure evolution, such as bulk and interfacial energy, elastic energy and electric or magnetic energy, and the effect of different transport processes, such as mass diffusion, heat conduction and convection. The purpose of the paper is to give an introduction to the phase-field modeling technique. The concept of diffuse interfaces, the phase-field variables, the thermodynamic driving force for microstructure evolution and the kinetic phase-field equations are introduced. Furthermore, common techniques for parameter determination and numerical solution of the equations are discussed. To show the variety in phase-field models, different model formulations are exploited, depending on which is most common or most illustrative.

782 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied how the model parameters of a generalized phase field model affect the landscape of the free-energy density functional, the phase field profiles at the grain boundaries, and the corresponding trajectory along the free energy landscape.
Abstract: A good choice of model formulation and model parameters is one of the most important and difficult aspects in mesoscale modeling and requires a systematic and quantitative analysis. In this paper, it is studied how the model parameters of a generalized phase field model affect the landscape of the free-energy density functional, the phase field profiles at the grain boundaries, and the corresponding trajectory along the free-energy landscape. The analysis results in quantitative relations between the model parameters, on one hand, and grain boundary energy and mobility, on the other hand. Based on these findings, a procedure is derived that generates a suitable set of model parameters that reproduces accurately a material's grain boundary energy and mobility for arbitrary misorientation and inclination dependence. The misorientation and inclination dependence are formulated so that the diffuse interface width is constant, resulting in uniform stability and accuracy conditions for the numerical solution. The proposed model formulation and parameter choice allow us to perform quantitative simulations with excellent controllability of the numerical accuracy and therefore of the material behavior.

292 citations

Journal ArticleDOI
TL;DR: In this article, a new type of interpolation function is introduced that has a zero slope at the equilibrium values of the nonconserved field variables representing the different phases and allows for a thermodynamically consistent interpolation of the free energies.

194 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that the combined use of plasma enhancement and the use of a catalyst such as In, already in a liquid form at the growth temperature, is a powerful method for obtaining Si nanowire growth with high yield.
Abstract: Au nanoparticles are efficient catalysts for the vapour?solid?liquid (VLS) growth of semiconductor nanowires, but Au poses fundamental reliability concerns for applications in Si semiconductor technology. In this work we show that the choice of catalysts for Si nanowire growth can be broadened when the need for catalytic precursor dissociation is eliminated through the use of plasma enhancement. However, in this regime the incubation time for the activation of VLS growth must be minimized to avoid burying the catalyst particles underneath an amorphous Si layer. We show that the combined use of plasma enhancement and the use of a catalyst such as In, already in a liquid form at the growth temperature, is a powerful method for obtaining Si nanowire growth with high yield. Si nanowires grown by this method are monocrystalline and generally oriented in the direction.

142 citations

Journal ArticleDOI
TL;DR: In this article, the pinning effect of small incoherent particles on grain growth in two-dimensional polycrystalline systems has been simulated using a phase field model, where the grain size distribution and the number of particles located at grain boundaries were determined as a function of time.

117 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Dissertation
01 Oct 1948
TL;DR: In this article, it was shown that a metal should be superconductive if a set of corners of a Brillouin zone is lying very near the Fermi surface, considered as a sphere, which limits the region in the momentum space completely filled with electrons.
Abstract: IN two previous notes1, Prof. Max Born and I have shown that one can obtain a theory of superconductivity by taking account of the fact that the interaction of the electrons with the ionic lattice is appreciable only near the boundaries of Brillouin zones, and particularly strong near the corners of these. This leads to the criterion that the metal should be superconductive if a set of corners of a Brillouin zone is lying very near the Fermi surface, considered as a sphere, which limits the region in the momentum space completely filled with electrons.

2,042 citations

Book
01 Jan 1996
TL;DR: A review of the collected works of John Tate can be found in this paper, where the authors present two volumes of the Abel Prize for number theory, Parts I, II, edited by Barry Mazur and Jean-Pierre Serre.
Abstract: This is a review of Collected Works of John Tate. Parts I, II, edited by Barry Mazur and Jean-Pierre Serre. American Mathematical Society, Providence, Rhode Island, 2016. For several decades it has been clear to the friends and colleagues of John Tate that a “Collected Works” was merited. The award of the Abel Prize to Tate in 2010 added impetus, and finally, in Tate’s ninety-second year we have these two magnificent volumes, edited by Barry Mazur and Jean-Pierre Serre. Beyond Tate’s published articles, they include five unpublished articles and a selection of his letters, most accompanied by Tate’s comments, and a collection of photographs of Tate. For an overview of Tate’s work, the editors refer the reader to [4]. Before discussing the volumes, I describe some of Tate’s work. 1. Hecke L-series and Tate’s thesis Like many budding number theorists, Tate’s favorite theorem when young was Gauss’s law of quadratic reciprocity. When he arrived at Princeton as a graduate student in 1946, he was fortunate to find there the person, Emil Artin, who had discovered the most general reciprocity law, so solving Hilbert’s ninth problem. By 1920, the German school of algebraic number theorists (Hilbert, Weber, . . .) together with its brilliant student Takagi had succeeded in classifying the abelian extensions of a number field K: to each group I of ideal classes in K, there is attached an extension L of K (the class field of I); the group I determines the arithmetic of the extension L/K, and the Galois group of L/K is isomorphic to I. Artin’s contribution was to prove (in 1927) that there is a natural isomorphism from I to the Galois group of L/K. When the base field contains an appropriate root of 1, Artin’s isomorphism gives a reciprocity law, and all possible reciprocity laws arise this way. In the 1930s, Chevalley reworked abelian class field theory. In particular, he replaced “ideals” with his “idèles” which greatly clarified the relation between the local and global aspects of the theory. For his thesis, Artin suggested that Tate do the same for Hecke L-series. When Hecke proved that the abelian L-functions of number fields (generalizations of Dirichlet’s L-functions) have an analytic continuation throughout the plane with a functional equation of the expected type, he saw that his methods applied even to a new kind of L-function, now named after him. Once Tate had developed his harmonic analysis of local fields and of the idèle group, he was able prove analytic continuation and functional equations for all the relevant L-series without Hecke’s complicated theta-formulas. Received by the editors September 5, 2016. 2010 Mathematics Subject Classification. Primary 01A75, 11-06, 14-06. c ©2017 American Mathematical Society

2,014 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the application of the phase-field method in different fields of materials science, including elastic interactions and fluid flow in multi-grain multi-phase structures in multicomponent materials.
Abstract: The phase-field method is reviewed against its historical and theoretical background. Starting from Van der Waals considerations on the structure of interfaces in materials the concept of the phase-field method is developed along historical lines. Basic relations are summarized in a comprehensive way. Special emphasis is given to the multi-phase-field method with extension to elastic interactions and fluid flow which allows one to treat multi-grain multi-phase structures in multicomponent materials. Examples are collected demonstrating the applicability of the different variants of the phase-field method in different fields of materials science.

1,004 citations