scispace - formally typeset
Search or ask a question

Showing papers by "Nello Cristianini published in 2000"


Book
01 Jan 2000
TL;DR: This is the first comprehensive introduction to Support Vector Machines (SVMs), a new generation learning system based on recent advances in statistical learning theory, and will guide practitioners to updated literature, new applications, and on-line software.
Abstract: From the publisher: This is the first comprehensive introduction to Support Vector Machines (SVMs), a new generation learning system based on recent advances in statistical learning theory. SVMs deliver state-of-the-art performance in real-world applications such as text categorisation, hand-written character recognition, image classification, biosequences analysis, etc., and are now established as one of the standard tools for machine learning and data mining. Students will find the book both stimulating and accessible, while practitioners will be guided smoothly through the material required for a good grasp of the theory and its applications. The concepts are introduced gradually in accessible and self-contained stages, while the presentation is rigorous and thorough. Pointers to relevant literature and web sites containing software ensure that it forms an ideal starting point for further study. Equally, the book and its associated web site will guide practitioners to updated literature, new applications, and on-line software.

13,736 citations


Book
01 Mar 2000
TL;DR: This book is the first comprehensive introduction to Support Vector Machines, a new generation learning system based on recent advances in statistical learning theory, and introduces Bayesian analysis of learning and relates SVMs to Gaussian Processes and other kernel based learning methods.
Abstract: This book is the first comprehensive introduction to Support Vector Machines (SVMs), a new generation learning system based on recent advances in statistical learning theory. The book also introduces Bayesian analysis of learning and relates SVMs to Gaussian Processes and other kernel based learning methods. SVMs deliver state-of-the-art performance in real-world applications such as text categorisation, hand-written character recognition, image classification, biosequences analysis, etc. Their first introduction in the early 1990s lead to a recent explosion of applications and deepening theoretical analysis, that has now established Support Vector Machines along with neural networks as one of the standard tools for machine learning and data mining. Students will find the book both stimulating and accessible, while practitioners will be guided smoothly through the material required for a good grasp of the theory and application of these techniques. The concepts are introduced gradually in accessible and self-contained stages, though in each stage the presentation is rigorous and thorough. Pointers to relevant literature and web sites containing software ensure that it forms an ideal starting point for further study. Equally the book will equip the practitioner to apply the techniques and an associated web site will provide pointers to updated literature, new applications, and on-line software.

4,327 citations


Journal ArticleDOI
TL;DR: A new method to analyse tissue samples using support vector machines for mis-labeled or questionable tissue results and shows that other machine learning methods also perform comparably to the SVM on many of those datasets.
Abstract: Motivation: DNA microarray experiments generating thousands of gene expression measurements, are being used to gather information from tissue and cell samples regarding gene expression differences that will be useful in diagnosing disease. We have developed a new method to analyse this kind of data using support vector machines (SVMs). This analysis consists of both classification of the tissue samples, and an exploration of the data for mis-labeled or questionable tissue results. Results: We demonstrate the method in detail on samples consisting of ovarian cancer tissues, normal ovarian tissues, and other normal tissues. The dataset consists of expression experiment results for 97 802 cDNAs for each tissue. As a result of computational analysis, a tissue sample is discovered and confirmed to be wrongly labeled. Upon correction of this mistake and the removal of an outlier, perfect classification of tissues is achieved, but not with high confidence. We identify and analyse a subset of genes from the ovarian dataset whose expression is highly differentiated between the types of tissues. To show robustness of the SVM method, two previously published datasets from other types of tissues or cells are analysed. The results are comparable to those previously obtained. We show that other machine learning methods also perform comparably to the SVM on many of those datasets. Availability: The SVM software is available at http:// www. cs.columbia.edu/ ∼bgrundy/ svm.

2,464 citations


Journal ArticleDOI
TL;DR: In this paper, a method of functionally classifying genes by using gene expression data from DNA microarray hybridization experiments is introduced based on the theory of support vector machines (SVMs).
Abstract: We introduce a method of functionally classifying genes by using gene expression data from DNA microarray hybridization experiments. The method is based on the theory of support vector machines (SVMs). SVMs are considered a supervised computer learning method because they exploit prior knowledge of gene function to identify unknown genes of similar function from expression data. SVMs avoid several problems associated with unsupervised clustering methods, such as hierarchical clustering and self-organizing maps. SVMs have many mathematical features that make them attractive for gene expression analysis, including their flexibility in choosing a similarity function, sparseness of solution when dealing with large data sets, the ability to handle large feature spaces, and the ability to identify outliers. We test several SVMs that use different similarity metrics, as well as some other supervised learning methods, and find that the SVMs best identify sets of genes with a common function using expression data. Finally, we use SVMs to predict functional roles for uncharacterized yeast ORFs based on their expression data.

2,395 citations


Proceedings Article
01 Jan 2000
TL;DR: In this article, an inner product in the feature space consisting of all subsequences of length k was introduced for comparing two text documents, where a subsequence is any ordered sequence of k characters occurring in the text though not necessarily contiguously.
Abstract: We introduce a novel kernel for comparing two text documents. The kernel is an inner product in the feature space consisting of all subsequences of length k. A subsequence is any ordered sequence of k characters occurring in the text though not necessarily contiguously. The subsequences are weighted by an exponentially decaying factor of their full length in the text, hence emphasising those occurrences which are close to contiguous. A direct computation of this feature vector would involve a prohibitive amount of computation even for modest values of k, since the dimension of the feature space grows exponentially with k. The paper describes how despite this fact the inner product can be efficiently evaluated by a dynamic programming technique. A preliminary experimental comparison of the performance of the kernel compared with a standard word feature space kernel [6] is made showing encouraging results.

1,464 citations


Proceedings Article
29 Jun 2000
TL;DR: This paper proposes an algorithm for the training of support vector machines using instance selection, a theoretical justification for the strategy and experimental results on real and artificial data demonstrating its effectiveness.
Abstract: The active selection of instances can significantly improve the generalisation performance of a learning machine. Large margin classifiers such as support vector machines classify data using the most informative instances (the support vectors). This makes them natural candidates for instance selection strategies. In this paper we propose an algorithm for the training of support vector machines using instance selection. We give a theoretical justification for the strategy and experimental results on real and artificial data demonstrating its effectiveness. The technique is most efficient when the data set can be learnt using few support vectors.

418 citations



Journal ArticleDOI
TL;DR: It is proved that other quantities can be as relevant to reduce their flexibility and combat overfitting to provide an upper bound on the generalization error which depends both on the size of the tree and on the margin of the decision nodes.
Abstract: Capacity control in perceptron decision trees is typically performed by controlling their size. We prove that other quantities can be as relevant to reduce their flexibility and combat overfitting. In particular, we provide an upper bound on the generalization error which depends both on the size of the tree and on the margin of the decision nodes. So enlarging the margin in perceptron decision trees will reduce the upper bound on generalization error. Based on this analysis, we introduce three new algorithms, which can induce large margin perceptron decision trees. To assess the effect of the large margin bias, OC1 (Journal of Artificial Intelligence Research, 1994, 2, 1–32.) of Murthy, Kasif and Salzberg, a well-known system for inducing perceptron decision trees, is used as the baseline algorithm. An extensive experimental study on real world data showed that all three new algorithms perform better or at least not significantly worse than OC1 on almost every dataset with only one exception. OC1 performed worse than the best margin-based method on every dataset.

102 citations


01 Jan 2000
TL;DR: This paper describes how the LSI approach can be implemented in a kernel-defined feature space and provides experimental results demonstrating that the approach can significantly improve performance, and that it does not impair it.
Abstract: Kernel methods like support vector machines have successfully been used for text categorization. A standard choice of kernel function has been the inner product between the vector-space representation of two documents, in analogy with classical information retrieval (IR) approaches. Latent semantic indexing (LSI) has been successfully used for IR purposes as a technique for capturing semantic relations between terms and inserting them into the similarity measure between two documents. One of its main drawbacks, in IR, is its computational cost. In this paper we describe how the LSI approach can be implemented in a kernel-defined feature space. We provide experimental results demonstrating that the approach can significantly improve performance, and that it does not impair it.

50 citations


Book Chapter
01 Jan 2000

36 citations