scispace - formally typeset
Search or ask a question
Author

Nelson G. Rondan

Other affiliations: University of Catania
Bio: Nelson G. Rondan is an academic researcher from University of Pittsburgh. The author has contributed to research in topics: Cycloaddition & Ab initio. The author has an hindex of 29, co-authored 64 publications receiving 3536 citations. Previous affiliations of Nelson G. Rondan include University of Catania.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors composes MCH 2 X avec M=Li ou Na et X=CH 3, NH 2, OH, F, SiH 3, PH 2, SH ou Cl, avec corrections de correlation electronique.
Abstract: Calculs ab initio sur les composes MCH 2 X avec M=Li ou Na et X=CH 3 , NH 2 , OH, F, SiH 3 , PH 2 , SH ou Cl, avec corrections de correlation electronique. Comparaison avec especes anioniques correspondantes

262 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The relatively small diffuse function-augmented basis set, 3-21+G, is shown to describe anion geometries and proton affinities adequately as discussed by the authors.
Abstract: The relatively small diffuse function-augmented basis set, 3-21+G, is shown to describe anion geometries and proton affinities adequately. The diffuse sp orbital exponents are recommended for general use to augment larger basis sets.

5,916 citations

Journal ArticleDOI
TL;DR: In this article, a new mixing scheme based on the MLEV-16 composite pulse decoupling cycle (II) was proposed, which is less sensitive to pulse imperfections and provides net magnetization transfer over a substantial bandwidth with only limited rf power.

3,552 citations

Journal ArticleDOI
TL;DR: The newly devised [RuCl(2)(phosphane)(2)(1,2-diamine)] complexes are excellent precatalysts for homogeneous hydrogenation of simple ketones which lack any functionality capable of interacting with the metal center.
Abstract: Hydrogenation is a core technology in chemical synthesis. High rates and selectivities are attainable only by the coordination of structurally well-designed catalysts and suitable reaction conditions. The newly devised [RuCl(2)(phosphane)(2)(1,2-diamine)] complexes are excellent precatalysts for homogeneous hydrogenation of simple ketones which lack any functionality capable of interacting with the metal center. This catalyst system allows for the preferential reduction of a C=O function over a coexisting C=C linkage in a 2-propanol solution containing an alkaline base. The hydrogenation tolerates many substituents including F, Cl, Br, I, CF(3), OCH(3), OCH(2)C(6)H(5), COOCH(CH(3))(2), NO(2), NH(2), and NRCOR as well as various electron-rich and -deficient heterocycles. Furthermore, stereoselectivity is easily controlled by the electronic and steric properties (bulkiness and chirality) of the ligands as well as the reaction conditions. Diastereoselectivities observed in the catalytic hydrogenation of cyclic and acyclic ketones with the standard triphenylphosphane/ethylenediamine combination compare well with the best conventional hydride reductions. The use of appropriate chiral diphosphanes, particularly BINAP compounds, and chiral diamines results in rapid and productive asymmetric hydrogenation of a range of aromatic and heteroaromatic ketones and gives a consistently high enantioselectivity. Certain amino and alkoxy ketones can be used as substrates. Cyclic and acyclic alpha,beta-unsaturated ketones can be converted into chiral allyl alcohols of high enantiomeric purity. Hydrogenation of configurationally labile ketones allows for the dynamic kinetic discrimination of diastereomers, epimers, and enantiomers. This new method shows promise in the practical synthesis of a wide variety of chiral alcohols from achiral and chiral ketone substrates. Its versatility is manifested by the asymmetric synthesis of some biologically significant chiral compounds. The high rate and carbonyl selectivity are based on nonclassical metal-ligand bifunctional catalysis involving an 18-electron amino ruthenium hydride complex and a 16-electron amido ruthenium species.

1,630 citations

Journal ArticleDOI
TL;DR: This review will focus mainly on the new methods that have appeared in the literature since 1989 for stereoselective cyclopropanation reactions from olefins: the halomethylmetal-mediated cycloalkane reactions, the transition metal-catalyzed decomposition of diazo compounds, and the nucleophilic addition-ring closure sequence.
Abstract: Organic chemists have always been fascinated by the cyclopropane subunit.1 The smallest cycloalkane is found as a basic structural element in a wide range of naturally occurring compounds.2 Moreover, many cyclopropane-containing unnatural products have been prepared to test the bonding features of this class of highly strained cycloalkanes3 and to study enzyme mechanism or inhibition.4 Cyclopropanes have also been used as versatile synthetic intermediates in the synthesis of more functionalized cycloalkanes5,6 and acyclic compounds.7 In recent years, most of the synthetic efforts have focused on the enantioselective synthesis of cyclopropanes.8 This has remained a challenge ever since it was found that the members of the pyrethroid class of compounds were effective insecticides.9 New and more efficient methods for the preparation of these entities in enantiomerically pure form are still evolving, and this review will focus mainly on the new methods that have appeared in the literature since 1989. It will elaborate on only three types of stereoselective cyclopropanation reactions from olefins: the halomethylmetal-mediated cyclopropanation reactions (eq 1), the transition metal-catalyzed decomposition of diazo compounds (eq 2), and the nucleophilic addition-ring closure sequence (eqs 3 and 4). These three processes will be examined in the context of diastereoand enantiocontrol. In the last section of the review, other methods commonly used to make chiral, nonracemic cyclopropanes will be briefly outlined.

1,426 citations