scispace - formally typeset
Search or ask a question
Author

Nestor L. Müller

Bio: Nestor L. Müller is an academic researcher from University of British Columbia. The author has contributed to research in topics: Lung & Respiratory disease. The author has an hindex of 111, co-authored 547 publications receiving 45508 citations. Previous affiliations of Nestor L. Müller include St. Paul's Hospital & Vancouver Hospital and Health Sciences Centre.


Papers
More filters
Journal ArticleDOI
TL;DR: This document represents the current state of knowledge regarding idiopathic pulmonary fibrosis, and contains sections on definition and epidemiology, risk factors, diagnosis, natural history, staging and prognosis, treatment, and monitoring disease course.
Abstract: This document is an international evidence-based guideline on the diagnosis and management of idiopathic pulmonary fibrosis, and is a collaborative effort of the American Thoracic Society, the European Respiratory Society, the Japanese Respiratory Society, and the Latin American Thoracic Association. It represents the current state of knowledge regarding idiopathic pulmonary fibrosis (IPF), and contains sections on definition and epidemiology, risk factors, diagnosis, natural history, staging and prognosis, treatment, and monitoring disease course. For the diagnosis and treatment sections, pragmatic GRADE evidence-based methodology was applied in a question-based format. For each diagnosis and treatment question, the committee graded the quality of the evidence available (high, moderate, low, or very low), and made a recommendation (yes or no, strong or weak). Recommendations were based on majority vote. It is emphasized that clinicians must spend adequate time with patients to discuss patients' values and preferences and decide on the appropriate course of action.

5,834 citations

Journal ArticleDOI
William D. Travis, Talmadge E. King, Eric D. Bateman, David A. Lynch, Frédrique Capron, Thomas V. Colby, Jean-François Cordier, Roland M. Dubois, Jeffrey R. Galvin, Philippe Grenier, David M. Hansell, Gary W. Hunninghake, Masanori Kitaichi, Nestor L. Müller, Jeffrey L. Myers, Sonoko Nagai, Andrew G. Nicholson, Ganesh Raghu, Benoit Wallaert, Christian Brambilla, Kevin K. Brown, Andrew L. Cherniaev, Ulrich Costabel, David B. Coultas, Gerald S. Davis, Maurits G. Demedts, William W. Douglas, Jim J. Egan, Anders Eklund, Leonarda M. Fabbri, Craig A. Henke, Richard Hubbard, Y. Inoue, Takateru Izumi, H. M. Jansen, Ian Johnston, Dong Soon Kim, Nasreen Khalil, Fiona R. Lake, Giuseppe Lungarella, Joseph P. Lynch, Douglas W. Mapel, Fernando J. Martinez, Richard A. Matthay, Lee S. Newman, Paul W. Noble, Ken Ohta, Dario Olivieri, Luis A. Ortiz, Venerino Poletti, Robert Rodriguez-Roisin, William N. Rom, Jay Hoon Ryu, Paulo Hilário Nascimento Saldiva, Raúl H Sansores, Marvin L. Schwarz, Moisés Selman, Cecelia M. Smith, Zhaohui Tong, Zarir F Udwadia, Dominique Valeyre, Athol U. Wells, Robert A. Wise, Antonio Xaubet, Emilio Alvarez Fernandez, Elisabeth Brambilla, Vera Luiza Capelozzi, Andrew Cherniaev, Peter Dalquen, Gerhard Dekan, Philip S. Hasleton, James C. Hogg, N. A. Jambhekar, Anna Luise A Katzenstein, Michael Koss, Osamu Matsubara, Klaus Michael Müller, F. B.J.M. Thunnissen, James A. Waldron, Wei Hua Li, Paul J. Friedman, Martin Remy-Jardin, Theresa C. McLoud 
TL;DR: The Diagnostic Process Is Dynamic Clinical Evaluation Radiological Evaluation Role of Surgical Lung Biopsy Unclassifiable Interstitial Pneumonia Bronchoalveolar Lavage Fluid Evaluation Idiopathic Pulmonary Fibrosis.
Abstract: Executive Summary Objectives Participants Evidence Validation Key Messages Introduction Rationale for a Change in the Approach to Classification of Idiopathic Interstitial Pneumonias Development of a New Classification of Idiopathic Interstitial Pneumonia Current Classification of IIP New ATS/ERS Classification Principles Guiding the Assessment of Patients with Idiopathic Interstitial Pneumonias The Diagnostic Process Is Dynamic Clinical Evaluation Radiological Evaluation Role of Surgical Lung Biopsy Unclassifiable Interstitial Pneumonia Bronchoalveolar Lavage Fluid Evaluation Idiopathic Pulmonary Fibrosis Clinical Features Radiologic Features Histologic Features IPF: Areas of Uncertainty Nonspecific Interstitial Pneumonia Clinical Features Radiologic Features Histologic Features NSIP: Areas of Uncertainty Cryptogenic Organizing Pneumonia Clinical Features Radiologic Features Histologic Features COP: Areas of Uncertainty Acute Interstitial Pneumonia Clinical Features Radiologic Features Histologic Features AIP: Areas of Uncertainty Respiratory Bronchiolitis-Associated Interstitial Lung Disease Clinical Features Radiologic Features Histologic Features RB-ILD: Areas of Uncertainty Desquamative Interstitial Pneumonia Clinical Features Radiologic Features Histologic Features DIP: Areas of Uncertainty Lymphoid Interstitial Pneumonia Clinical Features Radiologic Features Histologic Features LIP: Areas of Uncertainty References Appendix

3,591 citations

Journal ArticleDOI
TL;DR: Members of the Fleischner Society compiled a glossary of terms for thoracic imaging that replaces previous glossaries published in 1984 and 1996 for Thoracic radiography and computed tomography, respectively.
Abstract: Members of the Fleischner Society compiled a glossary of terms for thoracic imaging that replaces previous glossaries published in 1984 and 1996 for thoracic radiography and computed tomography (CT), respectively. The need to update the previous versions came from the recognition that new words have emerged, others have become obsolete, and the meaning of some terms has changed. Brief descriptions of some diseases are included, and pictorial examples (chest radiographs and CT scans) are provided for the majority of terms.

3,299 citations

Journal ArticleDOI
01 Oct 1988-Chest
TL;DR: A computed tomography scanner program that highlights voxels within a given density range to quantitate emphysema by defining areas of abnormally low attenuation accurately assesses the extent of emphySEma and eliminates interobserver and intraobserver variability.

813 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This document represents the current state of knowledge regarding idiopathic pulmonary fibrosis, and contains sections on definition and epidemiology, risk factors, diagnosis, natural history, staging and prognosis, treatment, and monitoring disease course.
Abstract: This document is an international evidence-based guideline on the diagnosis and management of idiopathic pulmonary fibrosis, and is a collaborative effort of the American Thoracic Society, the European Respiratory Society, the Japanese Respiratory Society, and the Latin American Thoracic Association. It represents the current state of knowledge regarding idiopathic pulmonary fibrosis (IPF), and contains sections on definition and epidemiology, risk factors, diagnosis, natural history, staging and prognosis, treatment, and monitoring disease course. For the diagnosis and treatment sections, pragmatic GRADE evidence-based methodology was applied in a question-based format. For each diagnosis and treatment question, the committee graded the quality of the evidence available (high, moderate, low, or very low), and made a recommendation (yes or no, strong or weak). Recommendations were based on majority vote. It is emphasized that clinicians must spend adequate time with patients to discuss patients' values and preferences and decide on the appropriate course of action.

5,834 citations

Journal ArticleDOI
TL;DR: This section is written to provide guidance in interpreting pulmonary function tests (PFTs) to medical directors of hospital-based laboratories that perform PFTs, and physicians who are responsible for interpreting the results of PFTS most commonly ordered for clinical purposes.
Abstract: SERIES “ATS/ERS TASK FORCE: STANDARDISATION OF LUNG FUNCTION TESTING” Edited by V. Brusasco, R. Crapo and G. Viegi Number 5 in this Series This section is written to provide guidance in interpreting pulmonary function tests (PFTs) to medical directors of hospital-based laboratories that perform PFTs, and physicians who are responsible for interpreting the results of PFTs most commonly ordered for clinical purposes. Specifically, this section addresses the interpretation of spirometry, bronchodilator response, carbon monoxide diffusing capacity ( D L,CO) and lung volumes. The sources of variation in lung function testing and technical aspects of spirometry, lung volume measurements and D L,CO measurement have been considered in other documents published in this series of Task Force reports 1–4 and in the American Thoracic Society (ATS) interpretative strategies document 5. An interpretation begins with a review and comment on test quality. Tests that are less than optimal may still contain useful information, but interpreters should identify the problems and the direction and magnitude of the potential errors. Omitting the quality review and relying only on numerical results for clinical decision making is a common mistake, which is more easily made by those who are dependent upon computer interpretations. Once quality has been assured, the next steps involve a series of comparisons 6 that include comparisons of test results with reference values based on healthy subjects 5, comparisons with known disease or abnormal physiological patterns ( i.e. obstruction and restriction), and comparisons with self, a rather formal term for evaluating change in an individual patient. A final step in the lung function report is to answer the clinical question that prompted the test. Poor choices made during these preparatory steps increase the risk of misclassification, i.e. a falsely negative or falsely positive interpretation for a lung function abnormality or a change …

5,078 citations

Journal ArticleDOI
TL;DR: Assessing the total lung capacity is indispensable in establishing a restrictive ventilatory defect or in diagnosing abnormal lung distensibility, as may occur in patients …
Abstract: Lung volumes are subdivided into static and dynamic lung volumes. Static lung volumes are measured by methods which are based on the completeness of respiratory manoeuvres, so that the velocity of the manoeuvres should be adjusted accordingly. The measurements taken during fast breathing movements are described as dynamic lung volumes and as forced inspiratory and expiratory flows. ### 1.1 Static lung volumes and capacities The volume of gas in the lung and intrathoracic airways is determined by the properties of lung parenchyma and surrounding organs and tissues, surface tension, the force exerted by respiratory muscles, by lung reflexes and by the properties of airways. The gas volumes of thorax and lung are the same except in the case of a pneumothorax. If two or more subdivisions of the total lung capacity are taken together, the sum of the constituent volumes is described as a lung capacity. Lung volumes and capacities are described in more detail in § 2. #### 1.1.1 Determinants Factors which determine the size of the normal lung include stature, age, sex, body mass, posture, habitus, ethnic group, reflex factors and daily activity pattern. The level of maximal inspiration (total lung capacity, TLC) is influenced by the force developed by the inspiratory muscles (disorders include e.g. muscular dystrophy), the elastic recoil of the lung (disorders include e.g. pulmonary fibrosis and emphysema) and the elastic properties of the thorax and adjacent structures (disorders include e.g. ankylosis of joints). The level of maximal expiration (residual volume, RV) is determined by the force exerted by respiratory muscles (disorders include e.g. muscle paralysis), obstruction, occlusion and compression of small airways (disorders include e.g. emphysema) and by the mechanical properties of lung and thorax (disorders include diffuse fibrosis, kyphoscoliosis). Assessing the total lung capacity is indispensable in establishing a restrictive ventilatory defect or in diagnosing abnormal lung distensibility, as may occur in patients …

5,052 citations

Journal ArticleDOI
TL;DR: Diagnostic Criteria of Nontuberculous Mycobacterial Lung Disease Key Laboratory Features of N TM Health Careand Hygiene-associated Disease Prevention Prophylaxis and Treatment of NTM Disease Introduction Methods.
Abstract: Diagnostic Criteria of Nontuberculous Mycobacterial Lung Disease Key Laboratory Features of NTM Health Careand Hygiene-associated Disease Prevention Prophylaxis and Treatment of NTM Disease Introduction Methods Taxonomy Epidemiology Pathogenesis Host Defense and Immune Defects Pulmonary Disease Body Morphotype Tumor Necrosis Factor Inhibition Laboratory Procedures Collection, Digestion, Decontamination, and Staining of Specimens Respiratory Specimens Body Fluids, Abscesses, and Tissues Blood Specimen Processing Smear Microscopy Culture Techniques Incubation of NTM Cultures NTM Identification Antimicrobial Susceptibility Testing for NTM Molecular Typing Methods of NTM Clinical Presentations and Diagnostic Criteria Pulmonary Disease Cystic Fibrosis Hypersensitivity-like Disease Transplant Recipients Disseminated Disease Lymphatic Disease Skin, Soft Tissue, and Bone Disease

4,969 citations