scispace - formally typeset
Search or ask a question
Author

Netanel H. Lindner

Bio: Netanel H. Lindner is an academic researcher from Technion – Israel Institute of Technology. The author has contributed to research in topics: Floquet theory & Topological insulator. The author has an hindex of 35, co-authored 117 publications receiving 7253 citations. Previous affiliations of Netanel H. Lindner include California Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a topological state can be induced in a semiconductor quantum well, initially in the trivial phase, by irradiation with microwave frequencies, without changing the well structure, closing the gap and crossing the phase transition.
Abstract: Topological phases of matter have captured our imagination over the past few years, with tantalizing properties such as robust edge modes and exotic non-Abelian excitations, and potential applications ranging from semiconductor spintronics to topological quantum computation. Despite recent advancements in the field, our ability to control topological transitions remains limited, and usually requires changing material or structural properties. We show, using Floquet theory, that a topological state can be induced in a semiconductor quantum well, initially in the trivial phase. This can be achieved by irradiation with microwave frequencies, without changing the well structure, closing the gap and crossing the phase transition. We show that the quasi-energy spectrum exhibits a single pair of helical edge states. We discuss the necessary experimental parameters for our proposal. This proposal provides an example and a proof of principle of a new non-equilibrium topological state, the Floquet topological insulator, introduced in this paper.

1,426 citations

Journal ArticleDOI
TL;DR: In this paper, a topological invariant for periodically driven systems of noninteracting particles is proposed, based on the analysis of the Floquet spectra of driven systems and the band structures of static Hamiltonians.
Abstract: Recently, several authors have investigated topological phenomena in periodically driven systems of noninteracting particles. These phenomena are identified through analogies between the Floquet spectra of driven systems and the band structures of static Hamiltonians. Intriguingly, these works have revealed phenomena that cannot be characterized by analogy to the topological classification framework for static systems. In particular, in driven systems in two dimensions (2D), robust chiral edge states can appear even though the Chern numbers of all the bulk Floquet bands are zero. Here, we elucidate the crucial distinctions between static and driven 2D systems, and construct a new topological invariant that yields the correct edge-state structure in the driven case. We provide formulations in both the time and frequency domains, which afford additional insight into the origins of the “anomalous” spectra that arise in driven systems. Possibilities for realizing these phenomena in solid-state and cold-atomic systems are discussed.

787 citations

Journal ArticleDOI
TL;DR: Tomographic analysis demonstrates that the polarization state of pairs of photons emitted from a biexciton decay cascade becomes entangled when spectral filtering is applied and that the remanent information in the quantum dot degrees of freedom is negligible.
Abstract: Tomographic analysis demonstrates that the polarization state of pairs of photons emitted from a biexciton decay cascade becomes entangled when spectral filtering is applied. The measured density matrix of the photon pair satisfies the Peres criterion for entanglement by more than 3 standard deviations of the experimental uncertainty and violates Bell's inequality. We show that the spectral filtering erases the "which path" information contained in the photons' color and that the remanent information in the quantum dot degrees of freedom is negligible.

779 citations

Posted Content
TL;DR: In this article, a topological invariant for periodically-driven systems of noninteracting particles is proposed. But the invariant is restricted to the time and frequency domains and cannot be applied to the case of driven systems.
Abstract: Recently, several authors have investigated topological phenomena in periodically-driven systems of non-interacting particles. These phenomena are identified through analogies between the Floquet spectra of driven systems and the band structures of static Hamiltonians. Intriguingly, these works have revealed that the topological characterization of driven systems is richer than that of static systems. In particular, in driven systems in two dimensions (2D), robust chiral edge states can appear even though the Chern numbers of all the bulk Floquet bands are zero. Here we elucidate the crucial distinctions between static and driven 2D systems, and construct a new topological invariant that yields the correct edge state structure in the driven case. We provide formulations in both the time and frequency domains, which afford additional insight into the origins of the "anomalous" spectra which arise in driven systems. Possible realizations of these phenomena in solid state and cold atomic systems are discussed.

392 citations

Journal ArticleDOI
04 May 2020
TL;DR: In this paper, the key principles underlying Floquet band engineering, wherein such fields are used to change the topological properties of a system's single-particle spectrum, are discussed.
Abstract: Non-equilibrium topological phenomena can be induced in quantum many-body systems using time-periodic fields (for example, by laser or microwave illumination). This Review begins with the key principles underlying Floquet band engineering, wherein such fields are used to change the topological properties of a system’s single-particle spectrum. In contrast to equilibrium systems, non-trivial band structure topology in a driven many-body system does not guarantee that robust topological behaviour will be observed. In particular, periodically driven many-body systems tend to absorb energy from their driving fields and thereby tend to heat up. We survey various strategies for overcoming this challenge of heating and for obtaining new topological phenomena in this non-equilibrium setting. We describe how drive-induced topological edge states can be probed in the regime of mesoscopic transport, and three routes for observing topological phenomena beyond the mesoscopic regime: long-lived transient dynamics and prethermalization, disorder-induced many-body localization, and engineered couplings to external baths. We discuss the types of phenomena that can be explored in each of the regimes covered, and their experimental realizations in solid-state, cold atomic, and photonic systems. Time-periodic fields provide a versatile platform for inducing non-equilibrium topological phenomena in quantum systems. We discuss how such fields can be used for topological band structure engineering, and the conditions for observing robust topological behaviour in a many-body setting.

347 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: In this article, the basic aspects of entanglement including its characterization, detection, distillation, and quantification are discussed, and a basic role of entonglement in quantum communication within distant labs paradigm is discussed.
Abstract: All our former experience with application of quantum theory seems to say: {\it what is predicted by quantum formalism must occur in laboratory} But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding However, it appeared that this new resource is very complex and difficult to detect Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying In particular, the authors discuss various manifestations of entanglement via Bell inequalities, entropic inequalities, entanglement witnesses, quantum cryptography and point out some interrelations They also discuss a basic role of entanglement in quantum communication within distant labs paradigm and stress some peculiarities such as irreversibility of entanglement manipulations including its extremal form - bound entanglement phenomenon A basic role of entanglement witnesses in detection of entanglement is emphasized

6,980 citations

Journal ArticleDOI
TL;DR: Weyl and Dirac semimetals as discussed by the authors are three-dimensional phases of matter with gapless electronic excitations that are protected by topology and symmetry, and they have generated much recent interest.
Abstract: Weyl and Dirac semimetals are three-dimensional phases of matter with gapless electronic excitations that are protected by topology and symmetry. As three-dimensional analogs of graphene, they have generated much recent interest. Deep connections exist with particle physics models of relativistic chiral fermions, and, despite their gaplessness, to solid-state topological and Chern insulators. Their characteristic electronic properties lead to protected surface states and novel responses to applied electric and magnetic fields. The theoretical foundations of these phases, their proposed realizations in solid-state systems, and recent experiments on candidate materials as well as their relation to other states of matter are reviewed.

3,407 citations

Journal ArticleDOI
TL;DR: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light as mentioned in this paper, which holds great promise for applications.
Abstract: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light. Drawing inspiration from the discovery of the quantum Hall effects and topological insulators in condensed matter, recent advances have shown how to engineer analogous effects also for photons, leading to remarkable phenomena such as the robust unidirectional propagation of light, which hold great promise for applications. Thanks to the flexibility and diversity of photonics systems, this field is also opening up new opportunities to realize exotic topological models and to probe and exploit topological effects in new ways. This article reviews experimental and theoretical developments in topological photonics across a wide range of experimental platforms, including photonic crystals, waveguides, metamaterials, cavities, optomechanics, silicon photonics, and circuit QED. A discussion of how changing the dimensionality and symmetries of photonics systems has allowed for the realization of different topological phases is offered, and progress in understanding the interplay of topology with non-Hermitian effects, such as dissipation, is reviewed. As an exciting perspective, topological photonics can be combined with optical nonlinearities, leading toward new collective phenomena and novel strongly correlated states of light, such as an analog of the fractional quantum Hall effect.

3,052 citations