scispace - formally typeset
Search or ask a question
Author

Ngoc Cuong Nguyen

Bio: Ngoc Cuong Nguyen is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Discontinuous Galerkin method & Finite element method. The author has an hindex of 29, co-authored 73 publications receiving 4807 citations. Previous affiliations of Ngoc Cuong Nguyen include National University of Singapore.


Papers
More filters
Journal ArticleDOI
TL;DR: Barrault et al. as discussed by the authors presented an efficient reduced-basis discretization procedure for partial differential equations with nonaffine parameter dependence, replacing non-affine coefficient functions with a collateral reducedbasis expansion, which then permits an affine offline-online computational decomposition.

1,265 citations

Journal ArticleDOI
TL;DR: In this paper, the authors extended the reduced-basis approximations developed earlier for linear elliptic and parabolic partial differential equations with affine parameter dependence to problems in volving.
Abstract: In this paper, we extend the reduced-basis approximations developed earlier for linear elliptic and parabolic partial differential equations with affine parameter dependence to problems in- volving (a) nonaffine dependence on the parameter, and (b) nonlinear dependence on the field variable. The method replaces the nonaffine and nonlinear terms with a coefficient function approximation which then permits an efficient offline-online computational decomposition. We first review the coefficient function approximation procedure: the essential ingredients are (i) a good collateral reduced-basis approximation space, and (ii) a stable and inexpensive interpolation procedure. We then apply this approach to linear nonaffine and nonlinear elliptic and parabolic equations; in each instance, we discuss the reduced-basis approximation and the associated offline-online computational procedures. Numeri- cal results are presented to assess our approach.

532 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present hybridizable discontinuous Galerkin methods for the numerical solution of steady and time-dependent nonlinear convection-diffusion equations, which are devised by expressing the approximate scalar variable and corresponding flux in terms of an approximate trace of the scalar variables and then explicitly enforcing the jump condition of the numerical fluxes across the element boundary.

295 citations

Journal ArticleDOI
TL;DR: In this article, Lagrangian interpolation is used to approximate general functions by finite sums of well chosen, pre-defined, linearly independent interpolating functions; it is much simpler to implement than determining the best fits with respect to some Banach (or even Hilbert) norm.
Abstract: Lagrangian interpolation is a classical way to approximate general functions by finite sums of well chosen, pre-defined, linearly independent interpolating functions; it is much simpler to implement than determining the best fits with respect to some Banach (or even Hilbert) norms. In addition, only partial knowledge is required (here values on some set of points). The problem of defining the best sample of points is nevertheless rather complex and is in general open. In this paper we propose a way to derive such sets of points. We do not claim that the points resulting from the construction explained here are optimal in any sense. Nevertheless, the resulting interpolation method is proven to work under certain hypothesis, the process is very general and simple to implement, and compared to situations where the best behavior is known, it is relatively competitive.

288 citations

Journal ArticleDOI
TL;DR: An implicit high-order hybridizable discontinuous Galerkin method for the steady-state and time-dependent incompressible Navier-Stokes equations and displays superconvergence properties that allow it to use the above-mentioned optimal convergence properties to define an element-by-element postprocessing scheme to compute a new and better approximate velocity.

267 citations


Cited by
More filters
Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

Journal ArticleDOI
TL;DR: A dimension reduction method called discrete empirical interpolation is proposed and shown to dramatically reduce the computational complexity of the popular proper orthogonal decomposition (POD) method for constructing reduced-order models for time dependent and/or parametrized nonlinear partial differential equations (PDEs).
Abstract: A dimension reduction method called discrete empirical interpolation is proposed and shown to dramatically reduce the computational complexity of the popular proper orthogonal decomposition (POD) method for constructing reduced-order models for time dependent and/or parametrized nonlinear partial differential equations (PDEs). In the presence of a general nonlinearity, the standard POD-Galerkin technique reduces dimension in the sense that far fewer variables are present, but the complexity of evaluating the nonlinear term remains that of the original problem. The original empirical interpolation method (EIM) is a modification of POD that reduces the complexity of evaluating the nonlinear term of the reduced model to a cost proportional to the number of reduced variables obtained by POD. We propose a discrete empirical interpolation method (DEIM), a variant that is suitable for reducing the dimension of systems of ordinary differential equations (ODEs) of a certain type. As presented here, it is applicable to ODEs arising from finite difference discretization of time dependent PDEs and/or parametrically dependent steady state problems. However, the approach extends to arbitrary systems of nonlinear ODEs with minor modification. Our contribution is a greatly simplified description of the EIM in a finite-dimensional setting that possesses an error bound on the quality of approximation. An application of DEIM to a finite difference discretization of the one-dimensional FitzHugh-Nagumo equations is shown to reduce the dimension from 1024 to order 5 variables with negligible error over a long-time integration that fully captures nonlinear limit cycle behavior. We also demonstrate applicability in higher spatial dimensions with similar state space dimension reduction and accuracy results.

1,695 citations

Journal ArticleDOI
TL;DR: Model reduction aims to reduce the computational burden by generating reduced models that are faster and cheaper to simulate, yet accurately represent the original large-scale system behavior as mentioned in this paper. But model reduction of linear, nonparametric dynamical systems has reached a considerable level of maturity, as reflected by several survey papers and books.
Abstract: Numerical simulation of large-scale dynamical systems plays a fundamental role in studying a wide range of complex physical phenomena; however, the inherent large-scale nature of the models often leads to unmanageable demands on computational resources. Model reduction aims to reduce this computational burden by generating reduced models that are faster and cheaper to simulate, yet accurately represent the original large-scale system behavior. Model reduction of linear, nonparametric dynamical systems has reached a considerable level of maturity, as reflected by several survey papers and books. However, parametric model reduction has emerged only more recently as an important and vibrant research area, with several recent advances making a survey paper timely. Thus, this paper aims to provide a resource that draws together recent contributions in different communities to survey the state of the art in parametric model reduction methods. Parametric model reduction targets the broad class of problems for wh...

1,230 citations

Journal ArticleDOI
TL;DR: (hierarchical, Lagrange) reduced basis approximation and a posteriori error estimation for linear functional outputs of affinely parametrized elliptic coercive partial differential equations are considered.
Abstract: In this paper we consider (hierarchical, La-grange)reduced basis approximation anda posteriori error estimation for linear functional outputs of affinely parametrized elliptic coercive partial differential equa-tions. The essential ingredients are (primal-dual)Galer-kin projection onto a low-dimensional space associated with a smooth “parametric manifold” - dimension re-duction; efficient and effective greedy sampling meth-ods for identification of optimal and numerically stable approximations - rapid convergence;a posteriori er-ror estimation procedures - rigorous and sharp bounds for the linear-functional outputs of interest; and Offine-Online computational decomposition strategies - min-imummarginal cost for high performance in the real-time/embedded (e.g., parameter-estimation, control)and many-query (e.g., design optimization, multi-model/ scale)contexts. We present illustrative results for heat conduction and convection-diffusion,inviscid flow, and linear elasticity; outputs include transport rates, added mass,and stress intensity factors.

1,090 citations