scispace - formally typeset
Search or ask a question
Author

Nguyen Huy Tiep

Bio: Nguyen Huy Tiep is an academic researcher from Nanyang Technological University. The author has contributed to research in topics: Perovskite (structure) & Magnetization. The author has an hindex of 8, co-authored 10 publications receiving 1120 citations. Previous affiliations of Nguyen Huy Tiep include University of Engineering and Technology, Lahore.

Papers
More filters
Journal ArticleDOI
TL;DR: The first paradigm of a high-rate and ultrastable flexible quasi-solid-state zinc-ion battery is constructed from a novel 2D ultrathin layered zinc orthovanadate array cathode, a Zn array anode supported by a conductive porous graphene foam, and a gel electrolyte.
Abstract: Zinc-ion batteries are under current research focus because of their uniqueness in low cost and high safety. However, it is still desirable to improve the rate performance by improving the Zn2+ (de)intercalation kinetics and long-cycle stability by eliminating the dendrite formation problem. Herein, the first paradigm of a high-rate and ultrastable flexible quasi-solid-state zinc-ion battery is constructed from a novel 2D ultrathin layered zinc orthovanadate array cathode, a Zn array anode supported by a conductive porous graphene foam, and a gel electrolyte. The nanoarray structure for both electrodes assures the high rate capability and alleviates the dendrite growth. The flexible Zn-ion battery has a depth of discharge of ≈100% for the cathode and 66% for the anode, and delivers an impressive high-rate of 50 C (discharge in 60 s), long-term durability of 2000 cycles at 20 C, and unprecedented energy density ≈115 Wh kg-1 , together with a peak power density ≈5.1 kW kg-1 (calculation includes masses of cathode, anode, and current collectors). First principles calculations and quantitative kinetics analysis show that the high-rate and stable properties are correlated with the 2D fast ion-migration pathways and the introduced intercalation pseudocapacitance.

534 citations

Journal ArticleDOI
TL;DR: A new approach of developing atomic epitaxial in-growth in Co-Ni3 N nanowires array is devised, where a nanoconfinement effect is reinforced at the interface, leading to a significant enhancement in catalytic activities for both hydrogen and oxygen evolution reactions.
Abstract: Electrocatalytic performance can be enhanced by engineering a purposely designed nanoheterojunction and fine-tuning the interface electronic structure. Herein a new approach of developing atomic epitaxial in-growth in Co-Ni3 N nanowires array is devised, where a nanoconfinement effect is reinforced at the interface. The Co-Ni3 N heterostructure array is formed by thermal annealing NiCo2 O4 precursor nanowires under an optimized condition, during which the nanowire morphology is retained. The epitaxial in-growth structure of Co-Ni3 N at nanometer scale facilitates the electron transfer between the two different domains at the epitaxial interface, leading to a significant enhancement in catalytic activities for both hydrogen and oxygen evolution reactions (10 and 16 times higher in the respective turn-over frequency compared to Ni3 N-alone nanorods). The interface transfer effect is verified by electronic binding energy shift and density functional theory (DFT) calculations. This nanoconfinement effect occurring during in situ atomic epitaxial in-growth of the two compatible materials shows an effective pathway toward high-performance electrocatalysis and energy storages.

373 citations

Journal ArticleDOI
TL;DR: In this paper, the degradation mechanisms of organometal trihalide perovskites in PSC devices, and the strategies for stability improvement are summarized and discussed, respectively.
Abstract: Organometal trihalide perovskites have recently emerged as promising materials for low-cost, high-efficiency solar cells. In less than five years, the efficiency of perovskite solar cells (PSC) has been updated rapidly as a result of new strategies adopted in their fabrication process, including device structure, interfacial engineering, chemical compositional tuning, and crystallization kinetics control. To date, the best PSC efficiency has reached 20.1%, which is close to that of single crystal silicon solar cells. However, the stability of PSC devices is still unsatisfactory and is the main bottleneck impeding their commercialization. Here, we summarize recent studies on the degradation mechanisms of organometal trihalide perovskites in PSC devices, and the strategies for stability improvement.

298 citations

Journal ArticleDOI
TL;DR: By employing in situ reduction of metal precursor and metal-assisted carbon etching process, a series of ultrafine transition metal-based nanoparticles embedded in N-doped carbon, which are found efficient catalysts for electrolytic water splitting, were achieved in this paper.
Abstract: By employing in situ reduction of metal precursor and metal-assisted carbon etching process, this study achieves a series of ultrafine transition metal-based nanoparticles (Ni–Fe, Ni–Mo) embedded in N-doped carbon, which are found efficient catalysts for electrolytic water splitting. The as-prepared hybrid materials demonstrate outstanding catalytic activities as non-noble metal electrodes rendered by the synergistic effect of bimetal elements and N-dopants, the improved electrical conductivity, and hydrophilism. Ni/Mo2C@N-doped porous carbon (NiMo-polyvinylpyrrolidone (PVP)) and NiFe@N-doped carbon (NiFe-PVP) produce low overpotentials of 130 and 297 mV at a current density of 10 mA cm−2 as catalysts for hydrogen evolution reaction and oxygen evolution reaction, respectively. In addition, these binder-free electrodes show long-term stability. Overall water splitting is also demonstrated based on the couple of NiMo-PVP||NiFe-PVP catalyzer. This represents a simple and effective synthesis method toward a new type of nanometal–carbon hybrid electrodes.

154 citations

Journal ArticleDOI
TL;DR: In this article, an ultrathin MoS2-xSex nanoflakes quasi-vertically aligned on the graphene-like carbon foam was obtained and investigated the Na-ion storage property using in-situ Raman spectroscopy and XRD measurements.

96 citations


Cited by
More filters
Journal ArticleDOI
14 Oct 2016-Science
TL;DR: This work shows that the small and oxidation-stable rubidium cation (Rb+) can be embedded into a “cation cascade” to create perovskite materials with excellent material properties and achieved stabilized efficiencies of up to 21.6% on small areas.
Abstract: All of the cations currently used in perovskite solar cells abide by the tolerance factor for incorporation into the lattice. We show that the small and oxidation-stable rubidium cation (Rb + ) can be embedded into a “cation cascade” to create perovskite materials with excellent material properties. We achieved stabilized efficiencies of up to 21.6% (average value, 20.2%) on small areas (and a stabilized 19.0% on a cell 0.5 square centimeters in area) as well as an electroluminescence of 3.8%. The open-circuit voltage of 1.24 volts at a band gap of 1.63 electron volts leads to a loss in potential of 0.39 volts, versus 0.4 volts for commercial silicon cells. Polymer-coated cells maintained 95% of their initial performance at 85°C for 500 hours under full illumination and maximum power point tracking.

3,034 citations

Journal ArticleDOI
TL;DR: The fundamentals, recent research progress, present status, and views on future prospects of perovskite-based photovoltaics, with discussions focused on strategies to improve both intrinsic and extrinsic (environmental) stabilities of high-efficiency devices are described.
Abstract: The photovoltaics of organic–inorganic lead halide perovskite materials have shown rapid improvements in solar cell performance, surpassing the top efficiency of semiconductor compounds such as CdTe and CIGS (copper indium gallium selenide) used in solar cells in just about a decade. Perovskite preparation via simple and inexpensive solution processes demonstrates the immense potential of this thin-film solar cell technology to become a low-cost alternative to the presently commercially available photovoltaic technologies. Significant developments in almost all aspects of perovskite solar cells and discoveries of some fascinating properties of such hybrid perovskites have been made recently. This Review describes the fundamentals, recent research progress, present status, and our views on future prospects of perovskite-based photovoltaics, with discussions focused on strategies to improve both intrinsic and extrinsic (environmental) stabilities of high-efficiency devices. Strategies and challenges regardi...

1,720 citations

Journal ArticleDOI
TL;DR: The fundamentals of HER are summarized and the recent state-of-the-art advances in the low-cost and high-performance catalysts based on noble and non-noble metals, as well as metal-free HER electrocatalysts are reviewed.
Abstract: Hydrogen fuel is considered as the cleanest renewable resource and the primary alternative to fossil fuels for future energy supply. Sustainable hydrogen generation is the major prerequisite to realize future hydrogen economy. The electrocatalytic hydrogen evolution reaction (HER), as the vital step of water electrolysis to H2 production, has been the subject of extensive study over the past decades. In this comprehensive review, we first summarize the fundamentals of HER and review the recent state-of-the-art advances in the low-cost and high-performance catalysts based on noble and non-noble metals, as well as metal-free HER electrocatalysts. We systemically discuss the insights into the relationship among the catalytic activity, morphology, structure, composition, and synthetic method. Strategies for developing an effective catalyst, including increasing the intrinsic activity of active sites and/or increasing the number of active sites, are summarized and highlighted. Finally, the challenges, perspectives, and research directions of HER electrocatalysis are featured.

1,387 citations

Journal ArticleDOI
TL;DR: In this paper, a review of recent advances in rechargeable aqueous zinc-ion batteries (ZIBs) is presented, highlighting the design of a highly reversible Zn anode, optimization of the electrolyte, and a wide range of cathode materials and their energy storage mechanisms.
Abstract: Although current high-energy-density lithium-ion batteries (LIBs) have taken over the commercial rechargeable battery market, increasing concerns about limited lithium resources, high cost, and insecurity of organic electrolyte scale-up limit their further development. Rechargeable aqueous zinc-ion batteries (ZIBs), an alternative battery chemistry, have paved the way not only for realizing environmentally benign and safe energy storage devices but also for reducing the manufacturing costs of next-generation batteries. This Review underscores recent advances in aqueous ZIBs; these include the design of a highly reversible Zn anode, optimization of the electrolyte, and a wide range of cathode materials and their energy storage mechanisms. We also present recent advanced techniques that aim at overcoming the current issues in aqueous ZIB systems. This Review on the future perspectives and research directions will provide a guide for future aqueous ZIB study.

1,370 citations

Journal ArticleDOI
21 Sep 2018-Science
TL;DR: Recent progress in addressing stability, how to allow mass production, and how to maintain uniformity of large-area films are reviewed, and the remaining challenges along the pathway to their commercialization are discussed.
Abstract: BACKGROUND Perovskite solar cells (PSCs) have attracted intensive attention because of their ever-increasing power conversion effi­ciency (PCE), low-cost materials constituents, and simple solution fabrication process. Initi­ated in 2009 with an efficiency of 3.8%, PSCs have now achieved a lab-scale power conversion efficiency of 23.3%, rivaling the performance of commercial multicrystalline silicon solar cells, as well as copper indium gallium selenide (CIGS) and cadmium telluride (CdTe) thin-film solar cells. Thousands of articles re­lated to PSCs have been published each year since 2015, highlighting PSCs as a topic of in­tense interest in photovoltaics (PV) research. With high efficiencies achieved in lab devices, stability and remaining challenges in upscal­ing the manufacture of PSCs are two critical concerns that must be addressed on the path to PSC commercialization. ADVANCES We review recent progress in PSCs and discuss the remaining challenges along the pathway to their commercialization. Device configurations of PSCs (see the figure) include mesoscopic formal (n-i-p) and inverted (p-i-n) structures, planar formal and inverted struc­tures, and the printable triple mesoscopic structures. PCEs of devices that use these structures have advanced rapidly in the case of small-area devices (~0.1 cm 2 ). PSCs are also attracting attention as top cells for the construction of tandem solar cells with existing mature PV technologies to increase efficiency beyond the Shockley-Queisser limit of single-junction devices. The stability of PSCs has attracted much well-deserved attention of late, and notable progress has been made in the past few years. PSCs have recently achieved exhibited life­times of 10,000 hours under 1 sun (1 kW/m 2 ) illumina­tion with an ultraviolet filter at a stabilized temperature of 55°C and at short-circuit conditions for a printable triple mesoscopic PSCs. This irradiation is equivalent to the total irradiation of 10 years of outdoor use in most of Europe. However, within the PSC community, standard testing protocols require further development. In addition, transpar­ency in reporting standards on stability tests needs to be improved; this can be achieved by providing both initial photovoltaic performance and normalization parameters. The upscaling of PSCs has also progressed steadily, leading to PSC mini-modules, standard-sized modules, and power systems. PV companies have set out to manufacture large-area PSC modules (see the figure), and a 110-m 2 perovskite PV system with screen-printed triple mesoscopic PSC modules was recently debuted. Studies of these increased-area modules and systems will promote the development of PSCs toward commercializa­tion. PSC research is expanding to cover fundamental topics on materials and lab-sized cells, as well as to address issues of in­dustrial-scale manufacturing and deployment. OUTLOOK The PV market has been continu­ously expanding in recent years, bringing op­portunities for new PV technologies of which PSCs are promising candidates. It is impera­tive to achieve a low cost per watt, which means that both efficiency and lifetime need improve­ment relative to current parameters. The efficiency gap between lab cells and industrial modules has seen impressive reduc­tions in crystalline silicon; PSCs must simi­larly enlarge module areas to the panel level and need to achieve lifetimes comparable to those of legacy PV technologies. Other improvements will need to include industry-scale electronic-grade films, recycling methods to address concerns regarding lead toxicity, and the adoption of standardized testing protocols to predict the operation lifetime of PSCs. Modules will need to endure light-induced degradation, potential-induced degradation, partial-shade stress, and mechanical shock. The field can benefit from lessons learned during the development of mature PV technologies as it strives to de­fine, and overcome, the hurdles to PSC com­mercial impact.

1,160 citations