scispace - formally typeset
Search or ask a question
Author

Nhan Phan-Thien

Bio: Nhan Phan-Thien is an academic researcher from National University of Singapore. The author has contributed to research in topics: Newtonian fluid & Shear flow. The author has an hindex of 55, co-authored 373 publications receiving 10211 citations. Previous affiliations of Nhan Phan-Thien include Ho Chi Minh City University of Technology & University of Newcastle.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a nonlinear constitutive equation for polymer melts and concentrated solutions is derived from a Lodge-Yamamoto type of network theory, where the network junctions are postulated to move nonaffinely in a well-defined manner.
Abstract: A nonlinear constitutive equation for polymer melts and concentrated solutions is derived from a Lodge‐Yamamoto type of network theory. The network junctions are postulated to move nonaffinely in a well‐defined manner. The functional form of the creation and destruction rates of junctions is assumed to depend on the average extension of the network strand and the absolute temperature in such a way to allow for the time‐temperature superposition principle. The theory shows good agreement with all data examined. The paper concludes with a strong flow problem (melt spinning). The results indicate the validity of the model in this flow regime.

487 citations

Journal ArticleDOI
TL;DR: A numerical method, based on neural-network-based functions, for solving partial differential equations is reported in the paper, which is extremely easy to implement and suitable for obtaining an approximate solution in a short period of time.
Abstract: A numerical method, based on neural-network-based functions, for solving partial differential equations is reported in the paper. Using a ‘universal approximator’ based on a neural network and point collocation, the numerical problem of solving the partial differential equation is transformed to an unconstrained minimization problem. The method is extremely easy to implement and is suitable for obtaining an approximate solution in a short period of time. The technique is illustrated with the aid of two numerical examples.

336 citations

Journal ArticleDOI
TL;DR: The Boundary Element Method is presented and benchmarked with existing Slender Body Theory results and reflection solutions for the motion of spheres and slender bodies near plane boundaries to model the swimming of a microorganism with a spherical cell body, propelled by a single rotating flagellum.

268 citations

Journal ArticleDOI
TL;DR: In this paper, the authors simulate DNA suspension microchannel flows using the dissipative particle dynamics (DPD) method, which is used to study the conformation evolution of DNA molecules passing through the microchannels.
Abstract: We simulate DNA suspension microchannel flows using the dissipative particle dynamics (DPD) method. Two developments make this simulation more realistic. One is to improve the dynamic characteristics of a DPD system by modifying the weighting function of the dissipative force and increasing its cutoff radius, so that the Schmidt number can be increased to a practical level. Another is to set up a wormlike chain model in the DPD framework, according to the measured extension properties of a DNA molecule in uniform flows. This chain model is then used to study flows of a DNA suspension through microchannels. Interesting results on the conformation evolution of DNA molecules passing through the microchannels, including periodic contraction-diffusion microchannels, are reported.

239 citations

Journal Article
TL;DR: It was determined that brain tissue is not strain-time separable, showing slower relaxation at higher strains, and that the stresses in shear are not linear with increasing shear strain.

194 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena as mentioned in this paper.
Abstract: Microfabricated integrated circuits revolutionized computation by vastly reducing the space, labor, and time required for calculations. Microfluidic systems hold similar promise for the large-scale automation of chemistry and biology, suggesting the possibility of numerous experiments performed rapidly and in parallel, while consuming little reagent. While it is too early to tell whether such a vision will be realized, significant progress has been achieved, and various applications of significant scientific and practical interest have been developed. Here a review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena. Specifically, this review explores the Reynolds number Re, addressing inertial effects; the Peclet number Pe, which concerns convective and diffusive transport; the capillary number Ca expressing the importance of interfacial tension; the Deborah, Weissenberg, and elasticity numbers De, Wi, and El, describing elastic effects due to deformable microstructural elements like polymers; the Grashof and Rayleigh numbers Gr and Ra, describing density-driven flows; and the Knudsen number, describing the importance of noncontinuum molecular effects. Furthermore, the long-range nature of viscous flows and the small device dimensions inherent in microfluidics mean that the influence of boundaries is typically significant. A variety of strategies have been developed to manipulate fluids by exploiting boundary effects; among these are electrokinetic effects, acoustic streaming, and fluid-structure interactions. The goal is to describe the physics behind the rich variety of fluid phenomena occurring on the nanoliter scale using simple scaling arguments, with the hopes of developing an intuitive sense for this occasionally counterintuitive world.

4,044 citations

Journal ArticleDOI
TL;DR: The atomic force microscope (AFM) is not only used to image the topography of solid surfaces at high resolution but also to measure force-versus-distance curves as discussed by the authors, which provide valuable information on local material properties such as elasticity, hardness, Hamaker constant, adhesion and surface charge densities.

3,281 citations

Journal ArticleDOI
TL;DR: The biophysical and mechanical principles of locomotion at the small scales relevant to cell swimming, tens of micrometers and below are reviewed, with emphasis on the simple physical picture and fundamental flow physics phenomena in this regime.
Abstract: Cell motility in viscous fluids is ubiquitous and affects many biological processes, including reproduction, infection and the marine life ecosystem. Here we review the biophysical and mechanical principles of locomotion at the small scales relevant to cell swimming, tens of micrometers and below. At this scale, inertia is unimportant and the Reynolds number is small. Our emphasis is on the simple physical picture and fundamental flow physics phenomena in this regime. We first give a brief overview of the mechanisms for swimming motility, and of the basic properties of flows at low Reynolds number, paying special attention to aspects most relevant for swimming such as resistance matrices for solid bodies, flow singularities and kinematic requirements for net translation. Then we review classical theoretical work on cell motility, in particular early calculations of swimming kinematics with prescribed stroke and the application of resistive force theory and slender-body theory to flagellar locomotion. After examining the physical means by which flagella are actuated, we outline areas of active research, including hydrodynamic interactions, biological locomotion in complex fluids, the design of small-scale artificial swimmers and the optimization of locomotion strategies. (Some figures in this article are in colour only in the electronic version) This article was invited by Christoph Schmidt.

2,274 citations

Journal ArticleDOI
TL;DR: In this article, a general technique for simulating solid-fluid suspensions is described, which combines Newtonian dynamics of the solid particles with a discretized Boltzmann equation for the fluid phase; the many-body hydrodynamic interactions are fully accounted for, both in the creeping flow regime and at higher Reynolds numbers.
Abstract: A new and very general technique for simulating solid–fluid suspensions is described; its most important feature is that the computational cost scales linearly with the number of particles. The method combines Newtonian dynamics of the solid particles with a discretized Boltzmann equation for the fluid phase; the many-body hydrodynamic interactions are fully accounted for, both in the creeping-flow regime and at higher Reynolds numbers. Brownian motion of the solid particles arises spontaneously from stochastic fluctuations in the fluid stress tensor, rather than from random forces or displacements applied directly to the particles. In this paper, the theoretical foundations of the technique are laid out, illustrated by simple analytical and numerical examples; in a companion paper (Part 2), extensive numerical tests of the method, for stationary flows, time-dependent flows, and finite-Reynolds-number flows, are reported.

2,073 citations

Journal ArticleDOI
TL;DR: This work reviews many significant developments over the past decade of the lattice-Boltzmann method and discusses higherorder boundary conditions and the simulation of microchannel flow with finite Knudsen number.
Abstract: With its roots in kinetic theory and the cellular automaton concept, the lattice-Boltzmann (LB) equation can be used to obtain continuum flow quantities from simple and local update rules based on particle interactions. The simplicity of formulation and its versatility explain the rapid expansion of the LB method to applications in complex and multiscale flows. We review many significant developments over the past decade with specific examples. Some of the most active developments include the entropic LB method and the application of the LB method to turbulent flow, multiphase flow, and deformable particle and fiber suspensions. Hybrid methods based on the combination of the Eulerian lattice with a Lagrangian grid system for the simulation of moving deformable boundaries show promise for more efficient applications to a broader class of problems. We also discuss higherorder boundary conditions and the simulation of microchannel flow with finite Knudsen number. Additionally, the remarkable scalability of the LB method for parallel processing is shown with examples. Teraflop simulations with the LB method are routine, and there is no doubt that this method will be one of the first candidates for petaflop computational fluid dynamics in the near future.

1,585 citations