scispace - formally typeset
Search or ask a question
Author

Nicholas A. Peppas

Bio: Nicholas A. Peppas is an academic researcher from University of Texas at Austin. The author has contributed to research in topics: Self-healing hydrogels & Drug delivery. The author has an hindex of 141, co-authored 825 publications receiving 90533 citations. Previous affiliations of Nicholas A. Peppas include National Technical University & University of Texas System.


Papers
More filters
Journal ArticleDOI
TL;DR: This review highlights design considerations to develop nanoparticle-based approaches for overcoming physiological hurdles in cancer treatment, as well as emerging research in engineering advanced delivery systems for the treatment of primary, metastatic, and multidrug resistant cancers.
Abstract: Treatment of cancer using nanoparticle-based approaches relies on the rational design of carriers with respect to size, charge, and surface properties. Polymer-based nanomaterials, inorganic materials such as gold, iron oxide, and silica as well as carbon based materials such as carbon nanotubes and graphene are being explored extensively for cancer therapy. The challenges associated with the delivery of these nanoparticles depend greatly on the type of cancer and stage of development. This review highlights design considerations to develop nanoparticle-based approaches for overcoming physiological hurdles in cancer treatment, as well as emerging research in engineering advanced delivery systems for the treatment of primary, metastatic, and multidrug resistant cancers. A growing understanding of cancer biology will continue to foster development of intelligent nanoparticle-based therapeutics that take into account diverse physiological contexts of changing disease states to improve treatment outcomes.

92 citations

Journal ArticleDOI
TL;DR: In this paper, a new model was developed to account for the kinetics of drug release from porous, non-swellable polymeric microparticles in the case where both drug dissolution and diffusion mechanisms control the overall release process.

91 citations

Journal ArticleDOI
TL;DR: This work addresses the preparation, behavior, and dynamics of the three-dimensional structure of biomimetic polymers for selective recognition via non-covalent complexation and matches functionality and positioning of chemical residues that specifically bind biomolecules in aqueous environments.
Abstract: Engineering the molecular design of biomaterials by controlling recognition and specificity is the first step in coordinating and duplicating complex biological and physiological processes. Studies of protein binding domains reveal molecular architectures with specific chemical moieties that provide a framework for selective recognition of target biomolecules in aqueous environment. By matching functionality and positioning of chemical residues, we have been successful in designing biomimetic polymer networks that specifically bind biomolecules in aqueous environments. Our work addresses the preparation, behavior, and dynamics of the three-dimensional structure of biomimetic polymers for selective recognition via non-covalent complexation. In particular, the synthesis and characterization of recognitive gels for the macromolecular recognition of D-glucose is highlighted. Novel copolymer networks containing poly(ethylene glycol) (PEG) and functional monomers such as acrylic acid, 2-hydroxyethyl methacrylate, and acrylamide were synthesized in dimethyl sulfoxide (polar, aprotic solvent) and water (polar, protic solvent) via UV-free radical polymerization. Polymers were characterized by single and competitive equilibrium and kinetic binding studies, single and competitive fluorescent and confocal microscopy studies, dynamic network swelling studies, and ATR-FTIR. Results qualitatively and quantitatively demonstrate effective glucose-binding polymers in aqueous solvent. Owing to the presence of template, the imprinting process resulted in a more macroporous structure as exhibited by dynamic swelling experiments and confocal microscopy. Polymerization kinetic studies suggest that the template molecule has more than a dilution effect on the polymerization, and the effect of the template is related strongly to the rate of propagation. In addition, PEG containing networks were micropatterned to fabricate microstructures, which would be the basis for micro-diagnostic and tissue engineering devices. Utilizing photolithography techniques, polymer micropatterns of a variety of shapes and dimensions have been created on polymer and silicon substrates using UV free-radical polymerizations with strict spatial control. Micropatterns were characterized using optical microscopy, SEM, and profilometry. The processes and analytical techniques presented are applicable to other stimuli-sensitive and recognitive networks for biomolecules, in which hydrogen bonding, hydrophobic, or ionic contributions will direct recognition. Further developments are expected to have direct impact on applications such as analyte controlled and modulated drug and protein delivery, drug and biological elimination, drug targeting, tissue engineering, and micro- or nano-devices. This work is supported by NSF Grant DGE-99-72770. Copyright © 2003 John Wiley & Sons, Ltd.

91 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the mucoadhesive capacity of poly(2-hydroxyethyl methacrylate) (PHEMA) microspheres in contact with Sprague-Dawley rat jejunum atpH = 6 and at 22°C.

90 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: The 11th edition of Harrison's Principles of Internal Medicine welcomes Anthony Fauci to its editorial staff, in addition to more than 85 new contributors.
Abstract: The 11th edition of Harrison's Principles of Internal Medicine welcomes Anthony Fauci to its editorial staff, in addition to more than 85 new contributors. While the organization of the book is similar to previous editions, major emphasis has been placed on disorders that affect multiple organ systems. Important advances in genetics, immunology, and oncology are emphasized. Many chapters of the book have been rewritten and describe major advances in internal medicine. Subjects that received only a paragraph or two of attention in previous editions are now covered in entire chapters. Among the chapters that have been extensively revised are the chapters on infections in the compromised host, on skin rashes in infections, on many of the viral infections, including cytomegalovirus and Epstein-Barr virus, on sexually transmitted diseases, on diabetes mellitus, on disorders of bone and mineral metabolism, and on lymphadenopathy and splenomegaly. The major revisions in these chapters and many

6,968 citations

Journal ArticleDOI
TL;DR: This review discusses the synthetic chemistry, fluid stabilization and surface modification of superparamagnetic iron oxide nanoparticles, as well as their use for above biomedical applications.

6,207 citations

Journal ArticleDOI
TL;DR: Probing the various interfaces of nanoparticle/biological interfaces allows the development of predictive relationships between structure and activity that are determined by nanomaterial properties such as size, shape, surface chemistry, roughness and surface coatings.
Abstract: Rapid growth in nanotechnology is increasing the likelihood of engineered nanomaterials coming into contact with humans and the environment. Nanoparticles interacting with proteins, membranes, cells, DNA and organelles establish a series of nanoparticle/biological interfaces that depend on colloidal forces as well as dynamic biophysicochemical interactions. These interactions lead to the formation of protein coronas, particle wrapping, intracellular uptake and biocatalytic processes that could have biocompatible or bioadverse outcomes. For their part, the biomolecules may induce phase transformations, free energy releases, restructuring and dissolution at the nanomaterial surface. Probing these various interfaces allows the development of predictive relationships between structure and activity that are determined by nanomaterial properties such as size, shape, surface chemistry, roughness and surface coatings. This knowledge is important from the perspective of safe use of nanomaterials.

6,075 citations