scispace - formally typeset
Search or ask a question
Author

Nicholas A. Peppas

Bio: Nicholas A. Peppas is an academic researcher from University of Texas at Austin. The author has contributed to research in topics: Self-healing hydrogels & Drug delivery. The author has an hindex of 141, co-authored 825 publications receiving 90533 citations. Previous affiliations of Nicholas A. Peppas include National Technical University & University of Texas System.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the swelling behavior of copolymers containing 2-hydroxyethyl methacrylate and various multiethylene glycol dimethacrylates was examined at 25°C.
Abstract: The swelling behavior of copolymers containing 2-hydroxyethyl methacrylate and various multiethylene glycol dimethacrylates was examined at 25°C. These highly crosslinked copolymers show some hydrophilic behavior due to the hydroxyl groups of HEMA. Analysis of the swelling data indicates and anomalous water transport in the network, which depends on the degree of crosslinking attained according to the dimethacrylate comonomer molar fraction in the copolymerization feed. Thermomechanical analysis data were used to further characterize the network structure.

27 citations

Journal ArticleDOI
TL;DR: In this article, the behavior of tethered polymers on gel/gel adhesion is studied with the single-chain mean-field (SCMF) theory, and the authors provide guidelines for experimental designs of novel gel materials with tethered layers.
Abstract: The behavior of tethered polymers on gel/gel adhesion is studied with the single-chain mean-field (SCMF) theory. It is shown that the gel surface structure, the gel/gel adhesion strength, the equilibrium gel/gel distance, and the detailed interface structures can be tailored by specifically designed tethered layers on gel surfaces. The SCMF theory allows to study the effect of various variables of tethered layers, such as the surface coverage, the attraction between polymers and gels, and the composition of block copolymers. These theoretical results provide guidelines for experimental designs of novel gel materials with tethered layers.

26 citations

Journal ArticleDOI
01 Apr 1977-Polymer
TL;DR: In this paper, a theoretical analysis and experimental investigation of the tear resistance behavior of semicrystalline polymeric networks was undertaken using crystalline poly(vinyl alcohol) hydrogels which were prepared by electron beam irradiation of aqueous PVA solutions followed by a two-stage dehydration-annealing process.

26 citations

Journal ArticleDOI
TL;DR: This work employs molecular docking simulations to investigate the interactions between albumin, a common protein template, and frequently employed ligands used in the literature at the molecular level, and shows that several of the ligands preferentially bind to the same sites on the protein, which indicates that if multiple monomers are used during synthesis then competition for the same amino acids could lead to non-specific recognition.
Abstract: Molecularly imprinted polymers are fully synthetic antibody mimics prepared via the crosslinking of organic monomers in the presence of an analyte. This general procedure is now well developed for small molecule templates; however, attempts to extend the same techniques to the macromolecular regime have achieved limited success to date. We employ molecular docking simulations to investigate the interactions between albumin, a common protein template, and frequently employed ligands used in the literature at the molecular level. Specifically, we determine the most favorable binding sites for these ligands on albumin and determine the types of non-covalent interactions taking place based on the amino acids present nearby this binding pocket. Our results show that hydrogen bonding, electrostatic interactions, and hydrophobic interactions occur between amino acids side chains and ligands. Several interactions are also taking place with the polypeptide backbone, potentially disrupting the protein's secondary structure. We show that several of the ligands preferentially bind to the same sites on the protein, which indicates that if multiple monomers are used during synthesis then competition for the same amino acids could lead to non-specific recognition. Both of these results provide rational explanations for the lack of success to date in the field.

26 citations

Journal ArticleDOI
TL;DR: The novel method of nanocarrier immobilization to the scaffold backbone via carbodiimide-crosslinker chemistry allows full retention of particles for up to four weeks within the scaffolding bulk, with no negative effects on the viability and proliferation of human umbilical vein endothelial cells (HUVEC).
Abstract: To guide the natural bone regeneration process, bone tissue engineering strategies rely on the development of a scaffold architecture that mimics the extracellular matrix and incorporates important extracellular signaling molecules, which promote fracture healing and bone formation pathways. Incorporation of growth factors into particles embedded within the scaffold can offer both protection of protein bioactivity and a sustained release profile. In this work, a novel method to immobilize carrier nanoparticles within scaffold pores is proposed. A biodegradable, osteoconductive, porous chitosan scaffold was fabricated via the “freeze-drying method,” leading to scaffolds with a storage modulus of 8.5 kPa and 300 μm pores, in line with existing bone scaffold properties. Next, poly(methyl methacrylate-co-methacrylic acid) nanoparticles were synthesized and immobilized to the scaffold via carbodiimide-crosslinker chemistry. A fluorescent imaging study confirmed that the conventional methods of protein and nanocarrier incorporation into scaffolds can lead to over 60% diffusion out of the scaffold within the first 5 min of implantation, and total disappearance within 4 weeks. The novel method of nanocarrier immobilization to the scaffold backbone via carbodiimide-crosslinker chemistry allows full retention of particles for up to 4 weeks within the scaffold bulk, with no negative effects on the viability and proliferation of human umbilical vein endothelial cells.

26 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: The 11th edition of Harrison's Principles of Internal Medicine welcomes Anthony Fauci to its editorial staff, in addition to more than 85 new contributors.
Abstract: The 11th edition of Harrison's Principles of Internal Medicine welcomes Anthony Fauci to its editorial staff, in addition to more than 85 new contributors. While the organization of the book is similar to previous editions, major emphasis has been placed on disorders that affect multiple organ systems. Important advances in genetics, immunology, and oncology are emphasized. Many chapters of the book have been rewritten and describe major advances in internal medicine. Subjects that received only a paragraph or two of attention in previous editions are now covered in entire chapters. Among the chapters that have been extensively revised are the chapters on infections in the compromised host, on skin rashes in infections, on many of the viral infections, including cytomegalovirus and Epstein-Barr virus, on sexually transmitted diseases, on diabetes mellitus, on disorders of bone and mineral metabolism, and on lymphadenopathy and splenomegaly. The major revisions in these chapters and many

6,968 citations

Journal ArticleDOI
TL;DR: This review discusses the synthetic chemistry, fluid stabilization and surface modification of superparamagnetic iron oxide nanoparticles, as well as their use for above biomedical applications.

6,207 citations

Journal ArticleDOI
TL;DR: Probing the various interfaces of nanoparticle/biological interfaces allows the development of predictive relationships between structure and activity that are determined by nanomaterial properties such as size, shape, surface chemistry, roughness and surface coatings.
Abstract: Rapid growth in nanotechnology is increasing the likelihood of engineered nanomaterials coming into contact with humans and the environment. Nanoparticles interacting with proteins, membranes, cells, DNA and organelles establish a series of nanoparticle/biological interfaces that depend on colloidal forces as well as dynamic biophysicochemical interactions. These interactions lead to the formation of protein coronas, particle wrapping, intracellular uptake and biocatalytic processes that could have biocompatible or bioadverse outcomes. For their part, the biomolecules may induce phase transformations, free energy releases, restructuring and dissolution at the nanomaterial surface. Probing these various interfaces allows the development of predictive relationships between structure and activity that are determined by nanomaterial properties such as size, shape, surface chemistry, roughness and surface coatings. This knowledge is important from the perspective of safe use of nanomaterials.

6,075 citations