scispace - formally typeset
Search or ask a question
Author

Nicholas A. Peppas

Bio: Nicholas A. Peppas is an academic researcher from University of Texas at Austin. The author has contributed to research in topics: Self-healing hydrogels & Drug delivery. The author has an hindex of 141, co-authored 825 publications receiving 90533 citations. Previous affiliations of Nicholas A. Peppas include National Technical University & University of Texas System.


Papers
More filters
Journal ArticleDOI
TL;DR: Insulin-loaded P(MAA-g-EG) microparticles enhanced the transport of insulin through the Caco-2 cell monolayers, and decreased microparticle sizes and short PEG chains systems led to higher permeability values.
Abstract: P(MAA-g-EG) microparticles have been extensively investigated as carriers for oral delivery of proteins such as insulin. In this study, we investigated the effect of the molecular weight of the PEG tethered chains in the copolymer network and of the microparticle size on the transepithelial electrical resistance (TEER) and insulin epithelial permeability, using monolayers of human intestinal epithelial Caco-2 cells. Two molecular weights of the PEG chains, 400 and 1000, were investigated, as well as three different dry microparticle sizes: 25-90, 90-150 and 150-212 μm. Their effect on the cell monolayer integrity was studied by monitoring TEER as a fraction of time and determining insulin permeability. The presence of insulin-loaded P(MAA-g-EG) microparticles decreases the TEERs value by 50% with respect to the control. This disruption of the cell monolayer was recovered in 3 h after the removal of the polymer microparticles. Within the range of PEG molecular weights studied, there was no significant chan...

22 citations

Journal ArticleDOI
TL;DR: It appears that crystals are probably differently distributed in the matrix depending on the microsphere size, and the calculation of the tortuosity factor clearly shows that the release kinetics are controlled by the hydrophobicity of ethylcellulose and the geometry of the porous volume resulting from the dissolution of ibuprofen crystals.
Abstract: The following work deals with ibuprofen-loaded ethylcellulose microspheres. The drug exists either in a state of molecular dispersion or in crystalline form, depending on the encapsulation ratio. The in vitro release profiles have been studied and the Higuchi model applied to the experimental results. With an appropriate treatment of the results, it has been shown that the surface crystals responsible for the observed burst effect are really encapsulated by the polymer. The calculation of the tortuosity factor clearly shows that the release kinetics are controlled by the hydrophobicity of ethylcellulse and the geometry of the porous volume resulting from the dissolution of ibuprofen crystals. It thus appears that crystals are probably differently distributed in the matrix depending on the microsphere size.

22 citations

Journal ArticleDOI
TL;DR: A chronology of key events leading to and including the creation of the H2O2 gene, a type of “spatially aggregating virus” that attacks the immune system through a number of mechanisms, including “cell reprograming” and “self-organisation”.

22 citations

Journal ArticleDOI
TL;DR: A configurational biomimetic imprinting technique was used to prepare recognition sites for glucose in copolymers of 2-hydroxyethyl methacrylate (HEMA) and methacrylic acid (MAA) prepared with crosslinking agents containing poly(ethylene glycol) (PEG).
Abstract: A configurational biomimetic imprinting technique was used to prepare recognition sites for glucose in copolymers of 2-hydroxyethyl methacrylate (HEMA) and methacrylic acid (MAA) prepared with crosslinking agents containing poly(ethylene glycol) (PEG). We report on the structure, diffusive, and recognition characteristics of these gels, the effect of the type and ratio of crosslinking agent, as well as the template/comonomer ratios on glucose binding ability. The highest equilibrium glucose binding was found as 2.67 mg/g dry polymer when PEG monomethacrylate (PEGMMA) was used in combination with tetra ethylene glycol dimethacrylate (TEGDMA) (50%) as a crosslinking agent. 2007 Wiley Periodicals, Inc. J Appl Polym Sci 103: 432- 441, 2007

22 citations

Journal ArticleDOI
TL;DR: To investigate the delivery of hydrophobic therapeutic agents, a novel class of interpenetrating networks (IPNs) were synthesized and composed of two networks: methacrylic acid grafted with poly(ethylene glycol) tethers, P(MAA-g-EG), and poly(n-butyl acrylate) (PBA).
Abstract: To investigate the delivery of hydrophobic therapeutic agents, a novel class of interpenetrating networks (IPNs) was synthesized and composed of two networks: methacrylic acid grafted with poly(ethylene glycol) tethers, P(MAA-g-EG) and poly(n-butyl acrylate) (PBA). The hydrophilic P(MAA-g-EG) networks are pH-responsive hydrogels capable of triggered release of an encapsulated therapeutic agent, such as a low molecular weight drug or a protein, when it passes from the stomach (low pH) to the upper small intestine (neutral pH). PBA is a hydrophobic homopolymer that can affect the IPN swelling behavior, the therapeutic agent loading efficiencies in IPNs, and solute release profiles from IPNs. In dynamic swelling conditions, IPNs had greater swelling ratios than P(MAA-g-EG), but in equilibrium swelling conditions the IPN swelling ratio decreased with increasing PBA content. Loading efficiencies of the model therapeutic agent fluorescein ranged from 21–44%. Release studies from neat P(MAA-g-EG) and the ensuing...

22 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: The 11th edition of Harrison's Principles of Internal Medicine welcomes Anthony Fauci to its editorial staff, in addition to more than 85 new contributors.
Abstract: The 11th edition of Harrison's Principles of Internal Medicine welcomes Anthony Fauci to its editorial staff, in addition to more than 85 new contributors. While the organization of the book is similar to previous editions, major emphasis has been placed on disorders that affect multiple organ systems. Important advances in genetics, immunology, and oncology are emphasized. Many chapters of the book have been rewritten and describe major advances in internal medicine. Subjects that received only a paragraph or two of attention in previous editions are now covered in entire chapters. Among the chapters that have been extensively revised are the chapters on infections in the compromised host, on skin rashes in infections, on many of the viral infections, including cytomegalovirus and Epstein-Barr virus, on sexually transmitted diseases, on diabetes mellitus, on disorders of bone and mineral metabolism, and on lymphadenopathy and splenomegaly. The major revisions in these chapters and many

6,968 citations

Journal ArticleDOI
TL;DR: This review discusses the synthetic chemistry, fluid stabilization and surface modification of superparamagnetic iron oxide nanoparticles, as well as their use for above biomedical applications.

6,207 citations

Journal ArticleDOI
TL;DR: Probing the various interfaces of nanoparticle/biological interfaces allows the development of predictive relationships between structure and activity that are determined by nanomaterial properties such as size, shape, surface chemistry, roughness and surface coatings.
Abstract: Rapid growth in nanotechnology is increasing the likelihood of engineered nanomaterials coming into contact with humans and the environment. Nanoparticles interacting with proteins, membranes, cells, DNA and organelles establish a series of nanoparticle/biological interfaces that depend on colloidal forces as well as dynamic biophysicochemical interactions. These interactions lead to the formation of protein coronas, particle wrapping, intracellular uptake and biocatalytic processes that could have biocompatible or bioadverse outcomes. For their part, the biomolecules may induce phase transformations, free energy releases, restructuring and dissolution at the nanomaterial surface. Probing these various interfaces allows the development of predictive relationships between structure and activity that are determined by nanomaterial properties such as size, shape, surface chemistry, roughness and surface coatings. This knowledge is important from the perspective of safe use of nanomaterials.

6,075 citations