scispace - formally typeset
Search or ask a question
Author

Nicholas Evans

Bio: Nicholas Evans is an academic researcher from Institut Eurécom. The author has contributed to research in topics: Spoofing attack & Speaker recognition. The author has an hindex of 36, co-authored 202 publications receiving 5926 citations. Previous affiliations of Nicholas Evans include University of Avignon & Technische Universität München.


Papers
More filters
Journal ArticleDOI
TL;DR: An analysis of speaker diarization performance as reported through the NIST Rich Transcription evaluations on meeting data and identify important areas for future research are presented.
Abstract: Speaker diarization is the task of determining “who spoke when?” in an audio or video recording that contains an unknown amount of speech and also an unknown number of speakers. Initially, it was proposed as a research topic related to automatic speech recognition, where speaker diarization serves as an upstream processing step. Over recent years, however, speaker diarization has become an important key technology for many tasks, such as navigation, retrieval, or higher level inference on audio data. Accordingly, many important improvements in accuracy and robustness have been reported in journals and conferences in the area. The application domains, from broadcast news, to lectures and meetings, vary greatly and pose different problems, such as having access to multiple microphones and multimodal information or overlapping speech. The most recent review of existing technology dates back to 2006 and focuses on the broadcast news domain. In this paper, we review the current state-of-the-art, focusing on research developed since 2006 that relates predominantly to speaker diarization for conference meetings. Finally, we present an analysis of speaker diarization performance as reported through the NIST Rich Transcription evaluations on meeting data and identify important areas for future research.

706 citations

Proceedings ArticleDOI
20 Aug 2017
TL;DR: ASVspoof 2017, the second in the series, focused on the development of replay attack countermeasures and indicates that the quest for countermeasures which are resilient in the face of variable replay attacks remains very much alive.
Abstract: The ASVspoof initiative was created to promote the development of countermeasures which aim to protect automatic speaker verification (ASV) from spoofing attacks. The first community-led, common evaluation held in 2015 focused on countermeasures for speech synthesis and voice conversion spoofing attacks. Arguably, however, it is replay attacks which pose the greatest threat. Such attacks involve the replay of recordings collected from enrolled speakers in order to provoke false alarms and can be mounted with greater ease using everyday consumer devices. ASVspoof 2017, the second in the series, hence focused on the development of replay attack countermeasures. This paper describes the database, protocols and initial findings. The evaluation entailed highly heterogeneous acoustic recording and replay conditions which increased the equal error rate (EER) of a baseline ASV system from 1.76% to 31.46%. Submissions were received from 49 research teams, 20 of which improved upon a baseline replay spoofing detector EER of 24.77%, in terms of replay/non-replay discrimination. While largely successful, the evaluation indicates that the quest for countermeasures which are resilient in the face of variable replay attacks remains very much alive.

435 citations

Journal ArticleDOI
TL;DR: A survey of past work and priority research directions for the future is provided, showing that future research should address the lack of standard datasets and the over-fitting of existing countermeasures to specific, known spoofing attacks.

433 citations

01 Jan 2014
TL;DR: In this paper, the authors provide a survey of spoofing countermeasures for automatic speaker verificati on, highlighting the need for more effort in the future to ensure adequate protection against spoofing attacks.
Abstract: While biometric authentication has advanced significantly in recent years, evidence shows the technology can be susceptible to malicious spoofing attacks. The research community has resp onded with dedicated countermeasures which aim to detect and deflect such attacks. Even if the literature shows that they can be effective, the problem is far from being solved; biometric systems remain vulnerable to spoofing. Despite a growing momentum to develo p spoofing countermeasures for automatic speaker verificati on, now that the technology has matured suffi ciently to support mass deployment in an array of diverse applications, greater effort will be needed in the future to ensure adequate protection against spoofing. This article provides a survey of past work and ide ntifies priority research directions for the future. We summarise previous studies involving impersonation, replay, speech synthesis and voice conversion spoofing attacks and more recent e fforts to develop dedicated countermeasures. The survey shows that future research should address the lack of standard datasets and the over-fitting of existing countermeasures to specific, know n spoofing attacks.

371 citations

Proceedings ArticleDOI
15 Sep 2019
TL;DR: The 2019 database, protocols and challenge results are described, and major findings which demonstrate the real progress made in protecting against the threat of spoofing and fake audio are outlined.
Abstract: ASVspoof, now in its third edition, is a series of community-led challenges which promote the development of countermeasures to protect automatic speaker verification (ASV) from the threat of spoofing. Advances in the 2019 edition include: (i) a consideration of both logical access (LA) and physical access (PA) scenarios and the three major forms of spoofing attack, namely synthetic, converted and replayed speech; (ii) spoofing attacks generated with state-of-the-art neu-ral acoustic and waveform models; (iii) an improved, controlled simulation of replay attacks; (iv) use of the tandem detection cost function (t-DCF) that reflects the impact of both spoofing and countermeasures upon ASV reliability. Even if ASV remains the core focus, in retaining the equal error rate (EER) as a secondary metric, ASVspoof also embraces the growing importance of fake audio detection. ASVspoof 2019 attracted the participation of 63 research teams, with more than half of these reporting systems that improve upon the performance of two baseline spoofing countermeasures. This paper describes the 2019 database, protocols and challenge results. It also outlines major findings which demonstrate the real progress made in protecting against the threat of spoofing and fake audio.

341 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: This paper starts with the fundamentals of automatic speaker recognition, concerning feature extraction and speaker modeling and elaborate advanced computational techniques to address robustness and session variability.

1,433 citations

01 Jan 2014

872 citations

Journal ArticleDOI
S. Biyiksiz1
01 Mar 1985
TL;DR: This book by Elliott and Rao is a valuable contribution to the general areas of signal processing and communications and can be used for a graduate level course in perhaps two ways.
Abstract: There has been a great deal of material in the area of discrete-time transforms that has been published in recent years. This book does an excellent job of presenting important aspects of such material in a clear manner. The book has 11 chapters and a very useful appendix. Seven of these chapters are essentially devoted to the Fourier series/transform, discrete Fourier transform, fast Fourier transform (FFT), and applications of the FFT in the area of spectral estimation. Chapters 8 through 10 deal with many other discrete-time transforms and algorithms to compute them. Of these transforms, the KarhunenLoeve, the discrete cosine, and the Walsh-Hadamard transform are perhaps the most well-known. A lucid discussion of number theoretic transforms i5 presented in Chapter 11. This reviewer feels that the authors have done a fine job of compiling the pertinent material and presenting it in a concise and clear manner. There are a number of problems at the end of each chapter, an appreciable number of which are challenging. The authors have included a comprehensive set of references at the end of the book. In brief, this book is a valuable contribution to the general areas of signal processing and communications. It can be used for a graduate level course in perhaps two ways. One would be to cover the first seven chapters in great detail. The other would be to cover the whole book by focussing on different topics in a selective manner. This book by Elliott and Rao is extremely useful to researchers/engineers who are working in the areas of signal processing and communications. It i s also an excellent reference book, and hence a valuable addition to one’s library

843 citations