scispace - formally typeset
Search or ask a question
Author

Nicholas G. Dou

Bio: Nicholas G. Dou is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Condensation & Thermal conductivity. The author has an hindex of 5, co-authored 8 publications receiving 943 citations. Previous affiliations of Nicholas G. Dou include California Institute of Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: This work shows that silanized copper oxide surfaces created via a simple fabrication method can achieve highly efficient jumping-droplet condensation heat transfer and promises a low cost and scalable approach to increase efficiency for applications such as atmospheric water harvesting and dehumidification.
Abstract: When droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump from the surface due to the release of excess surface energy. If designed properly, these superhydrophobic nanostructured surfaces can not only allow for easy droplet removal at micrometric length scales during condensation but also promise to enhance heat transfer performance. However, the rationale for the design of an ideal nanostructured surface as well as heat transfer experiments demonstrating the advantage of this jumping behavior are lacking. Here, we show that silanized copper oxide surfaces created via a simple fabrication method can achieve highly efficient jumping-droplet condensation heat transfer. We experimentally demonstrated a 25% higher overall heat flux and 30% higher condensation heat transfer coefficient compared to state-of-the-art hydrophobic condensing surfaces at low supersaturations (<1.12). This work not only shows significant condensation heat transfer enhancement but also promises a low cost and scalable approach to increase efficiency for applications such as atmospheric water harvesting and dehumidification. Furthermore, the results offer insights and an avenue to achieve high flux superhydrophobic condensation.

854 citations

Proceedings ArticleDOI
03 Mar 2012
TL;DR: In this paper, a scalable synthesis technique to produce oxide nanostructures on copper surfaces capable of sustaining superhydrophobic condensation and characterized the growth and departure behavior of condensed droplets.
Abstract: Condensation is an important process in both emerging and traditional power generation and water desalination technologies. Superhydrophobic nanostructures promise enhanced condensation heat transfer by reducing the characteristic size of departing droplets via a surface-tension-driven mechanism [1]. In this work, we investigated a scalable synthesis technique to produce oxide nanostructures on copper surfaces capable of sustaining superhydrophobic condensation and characterized the growth and departure behavior of condensed droplets. Nanostructured copper oxide (CuO) films were formed via chemical oxidation in an alkaline solution. A dense array of sharp CuO nanostructures with characteristic heights and widths of ∼1 μm and ∼300 nm, respectively, were formed. A gold film was deposited on the surface and functionalized with a self-assembled monolayer to make the surfaces hydrophobic. Condensation on these surfaces was then characterized using optical microscopy (OM) and environmental scanning electron microscopy (ESEM) to quantify the distribution of nucleation sites and elucidate the growth behavior of individual droplets with a characteristic size of ∼1 to 10 μm at low supersaturations. Comparison of the observed behavior to a recently developed model for condensation on superhydrophobic surfaces [2, 3] suggests a restricted regime of heat transfer enhancement compared to a corresponding smooth hydrophobic surface due to the large apparent contact angles demonstrated by the CuO surface.Copyright © 2012 by ASME

73 citations

Journal ArticleDOI
TL;DR: This work reports that nanolattices composed of 24- to 182-nm-thick hollow alumina beams in the octet-truss architecture achieved thermal conductivities as low as 2 mW m-1 K-1 at room temperature while maintaining specific stiffnesses of 0.3 to 3 MPa kg-1 m3 and the ability to recover from large deformations.
Abstract: Creating materials that simultaneously possess ultralow thermal conductivity, high stiffness, and damage tolerance is challenging because thermal and mechanical properties are coupled in most fully dense and porous solids. Nanolattices can fill this void in the property space because of their hierarchical design and nanoscale features. We report that nanolattices composed of 24- to 182-nm-thick hollow alumina beams in the octet-truss architecture achieved thermal conductivities as low as 2 mW m^(–1) K^(–1) at room temperature while maintaining specific stiffnesses of 0.3 to 3 MPa kg^(–1) m^3 and the ability to recover from large deformations. These nanoarchitected materials possess the same ultralow thermal conductivities as aerogels while attaining specific elastic moduli that are nearly 2 orders of magnitude higher. Our work demonstrates a general route to realizing multifunctional materials that occupy previously unreachable regions within the material property space.

53 citations

Journal ArticleDOI
TL;DR: In this paper, heat conduction in the exact nanotruss geometry was studied by solving the frequency-dependent Boltzmann transport equation using a variance-reduced Monte Carlo algorithm.
Abstract: Materials that possess low density, low thermal conductivity, and high stiffness are desirable for engineering applications, but most materials cannot realize these properties simultaneously due to the coupling between them. Nanotrusses, which consist of hollow nanoscale beams architected into a periodic truss structure, can potentially break these couplings due to their lattice architecture and nanoscale features. In this work, we study heat conduction in the exact nanotruss geometry by solving the frequency-dependent Boltzmann transport equation using a variance-reduced Monte Carlo algorithm. We show that their thermal conductivity can be described with only two parameters, solid fraction and wall thickness. Our simulations predict that nanotrusses can realize unique combinations of mechanical and thermal properties that are challenging to achieve in typical materials.

15 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the historical development, new phenomena and emerging applications of superwettability systems are discussed and a review of the superwetability properties of interfacial materials is presented.
Abstract: Studying nature to reveal the mechanisms of special wetting phenomena in biological systems can effectively inspire the design and fabrication of functional interfacial materials with superwettability. In this Review, the historical development, new phenomena and emerging applications of superwettability systems are discussed.

1,109 citations

Journal ArticleDOI
TL;DR: Different strategies to achieve ice repellency on various hydrophilic and hydrophobic surfaces are reviewed with a focus on the recent development of superhydrophobic and lubricant-infused surfaces.
Abstract: Ice repellency can be achieved on various hydrophilic and hydrophobic surfaces, although a surface that repels ice under all environmental scenarios remains elusive. Different strategies are reviewed with a focus on the recent development of superhydrophobic and lubricant-infused surfaces.

979 citations

Journal ArticleDOI
TL;DR: This work shows that silanized copper oxide surfaces created via a simple fabrication method can achieve highly efficient jumping-droplet condensation heat transfer and promises a low cost and scalable approach to increase efficiency for applications such as atmospheric water harvesting and dehumidification.
Abstract: When droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump from the surface due to the release of excess surface energy. If designed properly, these superhydrophobic nanostructured surfaces can not only allow for easy droplet removal at micrometric length scales during condensation but also promise to enhance heat transfer performance. However, the rationale for the design of an ideal nanostructured surface as well as heat transfer experiments demonstrating the advantage of this jumping behavior are lacking. Here, we show that silanized copper oxide surfaces created via a simple fabrication method can achieve highly efficient jumping-droplet condensation heat transfer. We experimentally demonstrated a 25% higher overall heat flux and 30% higher condensation heat transfer coefficient compared to state-of-the-art hydrophobic condensing surfaces at low supersaturations (<1.12). This work not only shows significant condensation heat transfer enhancement but also promises a low cost and scalable approach to increase efficiency for applications such as atmospheric water harvesting and dehumidification. Furthermore, the results offer insights and an avenue to achieve high flux superhydrophobic condensation.

854 citations

Journal ArticleDOI
10 Mar 2014-ACS Nano
TL;DR: Effectively trapping air in surface textures of superhydrophobic surfaces weakens the interaction of the surfaces with liquid water, which enables timely removal of impacting and condensed water droplets before freezing occurs.
Abstract: Undesired ice accumulation leads to severe economic issues and, in some cases, loss of lives. Although research on anti-icing has been carried out for decades, environmentally harmless, economical, and efficient strategies for anti-icing remain to be developed. Recent researches have provided new insights into the icing phenomenon and shed light on some promising bio-inspired anti-icing strategies. The present review critically categorizes and discusses recent developments. Effectively trapping air in surface textures of superhydrophobic surfaces weakens the interaction of the surfaces with liquid water, which enables timely removal of impacting and condensed water droplets before freezing occurs. When ice already forms, ice adhesion can be significantly reduced if liquid is trapped in surface textures as a lubricating layer. As such, ice could be shed off by an action of wind or its gravity. In addition, bio-inspired anti-icing strategies via trapping or introducing other media, such as phase change mate...

715 citations

Journal ArticleDOI
03 Mar 2016-Nature
TL;DR: In this paper, a design approach based on principles derived from Namib desert beetles, cacti, and pitcher plants is proposed to maximize vapour diffusion flux at the apex of convex millimetric bumps by optimizing the radius of curvature and cross-sectional shape.
Abstract: Controlling dropwise condensation is fundamental to water-harvesting systems, desalination, thermal power generation, air conditioning, distillation towers, and numerous other applications. For any of these, it is essential to design surfaces that enable droplets to grow rapidly and to be shed as quickly as possible. However, approaches based on microscale, nanoscale or molecular-scale textures suffer from intrinsic trade-offs that make it difficult to optimize both growth and transport at once. Here we present a conceptually different design approach--based on principles derived from Namib desert beetles, cacti, and pitcher plants--that synergistically combines these aspects of condensation and substantially outperforms other synthetic surfaces. Inspired by an unconventional interpretation of the role of the beetle's bumpy surface geometry in promoting condensation, and using theoretical modelling, we show how to maximize vapour diffusion fluxat the apex of convex millimetric bumps by optimizing the radius of curvature and cross-sectional shape. Integrating this apex geometry with a widening slope, analogous to cactus spines, directly couples facilitated droplet growth with fast directional transport, by creating a free-energy profile that drives the droplet down the slope before its growth rate can decrease. This coupling is further enhanced by a slippery, pitcher-plant-inspired nanocoating that facilitates feedback between coalescence-driven growth and capillary-driven motion on the way down. Bumps that are rationally designed to integrate these mechanisms are able to grow and transport large droplets even against gravity and overcome the effect of an unfavourable temperature gradient. We further observe an unprecedented sixfold-higher exponent of growth rate, faster onset, higher steady-state turnover rate, and a greater volume of water collected compared to other surfaces. We envision that this fundamental understanding and rational design strategy can be applied to a wide range of water-harvesting and phase-change heat-transfer applications.

591 citations