scispace - formally typeset
Search or ask a question
Author

Nicholas J. Hestand

Bio: Nicholas J. Hestand is an academic researcher from University of Chicago. The author has contributed to research in topics: Exciton & Intermolecular force. The author has an hindex of 15, co-authored 22 publications receiving 1545 citations. Previous affiliations of Nicholas J. Hestand include Evangel University & University of Pennsylvania.

Papers
More filters
Journal ArticleDOI
TL;DR: This review outlines advances made in understanding the relationship between aggregate structure and photophysics when vibronic coupling and intermolecular charge transfer are incorporated.
Abstract: The electronic excited states of molecular aggregates and their photophysical signatures have long fascinated spectroscopists and theoreticians alike since the advent of Frenkel exciton theory almost 90 years ago. The influence of molecular packing on basic optical probes like absorption and photoluminescence was originally worked out by Kasha for aggregates dominated by Coulombic intermolecular interactions, eventually leading to the classification of J- and H-aggregates. This review outlines advances made in understanding the relationship between aggregate structure and photophysics when vibronic coupling and intermolecular charge transfer are incorporated. An assortment of packing geometries is considered from the humble molecular dimer to more exotic structures including linear and bent aggregates, two-dimensional herringbone and “HJ” aggregates, and chiral aggregates. The interplay between long-range Coulomb coupling and short-range charge-transfer-mediated coupling strongly depends on the aggregate ...

865 citations

Journal ArticleDOI
TL;DR: Interference between the short- and long-range (Coulomb) couplings gives rise to a host of new aggregate types, referred to as HH, HJ, JH, and JJ aggregates, with distinct photophysical properties, which can be exploited for electronic materials design.
Abstract: ConspectusThe transport and photophysical properties of organic molecular aggregates, films, and crystals continue to receive widespread attention, driven mainly by expanding commercial applications involving display and wearable technologies as well as the promise of efficient, large-area solar cells. The main blueprint for understanding how molecular packing impacts photophysical properties was drafted over five decades ago by Michael Kasha. Kasha showed that the Coulombic coupling between two molecules, as determined by the alignment of their transition dipoles, induces energetic shifts in the main absorption spectral peak and changes in the radiative decay rate when compared to uncoupled molecules. In H-aggregates, the transition dipole moments align “side-by-side” leading to a spectral blue-shift and suppressed radiative decay rate, while in J-aggregates, the transition dipole moments align “head-to-tail” leading to a spectral red-shift and an enhanced radiative decay rate. Although many examples of ...

400 citations

Journal ArticleDOI
TL;DR: Vibronic spectral signatures are developed for integrated Frenkel/CT systems in both the perturbative and resonance regimes and are applied to the reversible H to J-aggregate transformations recently observed in several perylene bisimide systems.
Abstract: The spectroscopic differences between J and H-aggregates are traditionally attributed to the spatial dependence of the Coulombic coupling, as originally proposed by Kasha. However, in tightly packed molecular aggregates wave functions on neighboring molecules overlap, leading to an additional charge transfer (CT) mediated exciton coupling with a vastly different spatial dependence. The latter is governed by the nodal patterns of the molecular LUMOs and HOMOs from which the electron (te) and hole (th) transfer integrals derive. The sign of the CT-mediated coupling depends on the sign of the product teth and is therefore highly sensitive to small (sub-Angstrom) transverse displacements or slips. Given that Coulombic and CT-mediated couplings exist simultaneously in tightly packed molecular systems, the interference between the two must be considered when defining J and H-aggregates. Generally, such π-stacked aggregates do not abide by the traditional classification scheme of Kasha: for example, even when the Coulomb coupling is strong the presence of a similarly strong but destructively interfering CT-mediated coupling results in "null-aggregates" which spectroscopically resemble uncoupled molecules. Based on a Frenkel/CT Holstein Hamiltonian that takes into account both sources of electronic coupling as well as intramolecular vibrations, vibronic spectral signatures are developed for integrated Frenkel/CT systems in both the perturbative and resonance regimes. In the perturbative regime, the sign of the lowest exciton band curvature, which rigorously defines J and H-aggregation, is directly tracked by the ratio of the first two vibronic peak intensities. Even in the resonance regime, the vibronic ratio remains a useful tool to evaluate the J or H nature of the system. The theory developed is applied to the reversible H to J-aggregate transformations recently observed in several perylene bisimide systems.

123 citations

Journal ArticleDOI
TL;DR: In this article, the spectral line shapes for excitation polarized along b and orthogonal to b are analyzed theoretically using a Holstein-like Hamiltonian which includes both Frenkel and charge transfer (CT) excitons represented in a multiparticle basis set.
Abstract: The polarized absorption spectra of crystalline pentacene are obtained for excitation normal to the ab herringbone plane by measuring transmitted light in ultrathin crystals. The spectral line shapes for excitation polarized along b and orthogonal to b are analyzed theoretically using a Holstein-like Hamiltonian which includes both Frenkel and charge transfer (CT) excitons represented in a multiparticle basis set. The model agrees with prior estimates regarding the strong CT contribution (≈45%) of the exciton responsible for the b-polarized lower Davydov component. The polarization resolution allows one to also establish the nature of the upper Davydov component, which is found to contain far less CT content (≈15%), as well as the natures of the higher-energy vibronic excitons, which are found to consist of a complex mixture of Frenkel one- and two-particle states and CT excitons. Generally, the spectrum polarized along b displays J-aggregate-like vibronic signatures while the spectrum polarized orthogona...

102 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined the interplay between extended exciton states delocalized along the polymer backbones and across polymer chains within the $\pi$-stack, depending on the structural development with molecular weight.
Abstract: The electronic properties of macromolecular semiconductor thin films depend profoundly on their solid-state microstructure, which in turn is governed, among other things, by the processing conditions selected and the polymer chemical nature and molecular weight. Specifically, low-molecular-weight materials form crystalline domains of cofacially $\pi$-stacked molecules, while the usually entangled nature of higher molecular-weight polymers leads to microstructures comprised of molecularly ordered crystallites interconnected by amorphous regions. Here, we examine the interplay between extended exciton states delocalized along the polymer backbones and across polymer chains within the $\pi$-stack, depending on the structural development with molecular weight. We combine optical spectroscopies, thermal probes, and theoretical modeling, focusing on neat poly(3-hexylthiophene) (P3HT), one of the most extensively studied polymer semiconductors, of weight-average molecular weight of 3-450\,kg/mol. The spatial coherence within the chain is significantly reduced (by nearly 30\%). These observations give valuable structural information; they suggest that the macromolecules in aggregated regions of high-molecular-weight P3HT adopt a more planar conformation compared to low-molecular-weight materials. This results in the observed increase in intrachain exciton coherence. In contrast, shorter chains seem to lead to torsionally more disordered architectures. A rigorous, fundamental description of primary photoexcitations in $\pi$-conjugated polymers is hence developed: two-dimensional excitons are defined by the chain-length dependent molecular arrangement and interconnectivity of the conjugated macromolecules, leading to interplay between intramolecular and intermolecular spatial coherence.

102 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: Progress is summarized, aiming to describe the molecular design strategy, to provide insight into the structure-property relationship, and to highlight the challenges the field is facing, with emphasis placed on most recent nonfullerene acceptors that demonstrated top-of-the-line photovoltaic performances.
Abstract: The bulk-heterojunction blend of an electron donor and an electron acceptor material is the key component in a solution-processed organic photovoltaic device. In the past decades, a p-type conjugated polymer and an n-type fullerene derivative have been the most commonly used electron donor and electron acceptor, respectively. While most advances of the device performance come from the design of new polymer donors, fullerene derivatives have almost been exclusively used as electron acceptors in organic photovoltaics. Recently, nonfullerene acceptor materials, particularly small molecules and oligomers, have emerged as a promising alternative to replace fullerene derivatives. Compared to fullerenes, these new acceptors are generally synthesized from diversified, low-cost routes based on building block materials with extraordinary chemical, thermal, and photostability. The facile functionalization of these molecules affords excellent tunability to their optoelectronic and electrochemical properties. Within t...

1,269 citations

Journal ArticleDOI
TL;DR: The article reviews the current understanding of the physical mechanisms that determine the (opto)electronic properties of high-performance organic materials and highlights the capabilities of various experimental techniques for characterization, summarizes top-of-the-line device performance, and outlines recent trends in the further development of the field.
Abstract: Organic (opto)electronic materials have received considerable attention due to their applications in thin-film-transistors, light-emitting diodes, solar cells, sensors, photorefractive devices, and many others. The technological promises include low cost of these materials and the possibility of their room-temperature deposition from solution on large-area and/or flexible substrates. The article reviews the current understanding of the physical mechanisms that determine the (opto)electronic properties of high-performance organic materials. The focus of the review is on photoinduced processes and on electronic properties important for optoelectronic applications relying on charge carrier photogeneration. Additionally, it highlights the capabilities of various experimental techniques for characterization of these materials, summarizes top-of-the-line device performance, and outlines recent trends in the further development of the field. The properties of materials based both on small molecules and on conjug...

995 citations

Journal ArticleDOI
TL;DR: This review outlines advances made in understanding the relationship between aggregate structure and photophysics when vibronic coupling and intermolecular charge transfer are incorporated.
Abstract: The electronic excited states of molecular aggregates and their photophysical signatures have long fascinated spectroscopists and theoreticians alike since the advent of Frenkel exciton theory almost 90 years ago. The influence of molecular packing on basic optical probes like absorption and photoluminescence was originally worked out by Kasha for aggregates dominated by Coulombic intermolecular interactions, eventually leading to the classification of J- and H-aggregates. This review outlines advances made in understanding the relationship between aggregate structure and photophysics when vibronic coupling and intermolecular charge transfer are incorporated. An assortment of packing geometries is considered from the humble molecular dimer to more exotic structures including linear and bent aggregates, two-dimensional herringbone and “HJ” aggregates, and chiral aggregates. The interplay between long-range Coulomb coupling and short-range charge-transfer-mediated coupling strongly depends on the aggregate ...

865 citations

Journal ArticleDOI
TL;DR: Formalisms describing absorption and photoluminescence lineshapes are reviewed, based on intra- and intermolecular excitonic coupling, electron-vibrational coupling, and correlated energetic disorder.
Abstract: Aggregates of conjugated polymers exhibit two classes of fundamental electronic interactions: those occurring within a given chain and those occurring between chains. The impact of such excitonic interactions on the photophysics of polymer films can be understood using concepts of J- and H-aggregation originally developed by Kasha and coworkers to treat aggregates of small molecules. In polymer assemblies, intrachain through-bond interactions lead to J-aggregate behavior, whereas interchain Coulombic interactions lead to H-aggregate behavior. The photophysics of common emissive conjugated polymer films are determined by a competition between intrachain, J-favoring interactions and interchain, H-favoring interactions. We review formalisms describing absorption and photoluminescence lineshapes, based on intra- and intermolecular excitonic coupling, electron-vibrational coupling, and correlated energetic disorder. Examples include regioregular polythiophenes, pheneylene-vinylenes, and polydiacetylene.

801 citations