scispace - formally typeset
Search or ask a question
Author

Nicholas J. Loman

Bio: Nicholas J. Loman is an academic researcher from University of Birmingham. The author has contributed to research in topics: Nanopore sequencing & Metagenomics. The author has an hindex of 64, co-authored 172 publications receiving 21548 citations. Previous affiliations of Nicholas J. Loman include Universidade Federal de Minas Gerais & Public Health England.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that contaminating DNA is ubiquitous in commonly used DNA extraction kits and other laboratory reagents, varies greatly in composition between different kits and kit batches, and that this contamination critically impacts results obtained from samples containing a low microbial biomass.
Abstract: The study of microbial communities has been revolutionised in recent years by the widespread adoption of culture independent analytical techniques such as 16S rRNA gene sequencing and metagenomics. One potential confounder of these sequence-based approaches is the presence of contamination in DNA extraction kits and other laboratory reagents. In this study we demonstrate that contaminating DNA is ubiquitous in commonly used DNA extraction kits and other laboratory reagents, varies greatly in composition between different kits and kit batches, and that this contamination critically impacts results obtained from samples containing a low microbial biomass. Contamination impacts both PCR-based 16S rRNA gene surveys and shotgun metagenomics. We provide an extensive list of potential contaminating genera, and guidelines on how to mitigate the effects of contamination. These results suggest that caution should be advised when applying sequence-based techniques to the study of microbiota present in low biomass environments. Concurrent sequencing of negative control samples is strongly advised.

2,459 citations

Journal ArticleDOI
TL;DR: ConCOCT, a new algorithm that combines sequence composition and coverage across multiple samples, to automatically cluster contigs into genomes is presented, demonstrating high recall and precision on artificial as well as real human gut metagenome data sets.
Abstract: Shotgun sequencing enables the reconstruction of genomes from complex microbial communities, but because assembly does not reconstruct entire genomes, it is necessary to bin genome fragments. Here we present CONCOCT, a new algorithm that combines sequence composition and coverage across multiple samples, to automatically cluster contigs into genomes. We demonstrate high recall and precision on artificial as well as real human gut metagenome data sets.

1,460 citations

Journal ArticleDOI
TL;DR: Ultra-long reads enabled assembly and phasing of the 4-Mb major histocompatibility complex (MHC) locus in its entirety, measurement of telomere repeat length, and closure of gaps in the reference human genome assembly GRCh38.
Abstract: We report the sequencing and assembly of a reference genome for the human GM12878 Utah/Ceph cell line using the MinION (Oxford Nanopore Technologies) nanopore sequencer. 91.2 Gb of sequence data, representing ∼30× theoretical coverage, were produced. Reference-based alignment enabled detection of large structural variants and epigenetic modifications. De novo assembly of nanopore reads alone yielded a contiguous assembly (NG50 ∼3 Mb). We developed a protocol to generate ultra-long reads (N50 > 100 kb, read lengths up to 882 kb). Incorporating an additional 5× coverage of these ultra-long reads more than doubled the assembly contiguity (NG50 ∼6.4 Mb). The final assembled genome was 2,867 million bases in size, covering 85.8% of the reference. Assembly accuracy, after incorporating complementary short-read sequencing data, exceeded 99.8%. Ultra-long reads enabled assembly and phasing of the 4-Mb major histocompatibility complex (MHC) locus in its entirety, measurement of telomere repeat length, and closure of gaps in the reference human genome assembly GRCh38.

1,425 citations

Journal ArticleDOI
TL;DR: The performance of these instruments were compared by sequencing an isolate of Escherichia coli O104:H4, which caused an outbreak of food poisoning in Germany in 2011, and the MiSeq had the highest throughput per run and lowest error rates.
Abstract: Three benchtop high-throughput sequencing instruments are now available. The 454 GS Junior (Roche), MiSeq (Illumina) and Ion Torrent PGM (Life Technologies) are laser-printer sized and offer modest set-up and running costs. Each instrument can generate data required for a draft bacterial genome sequence in days, making them attractive for identifying and characterizing pathogens in the clinical setting. We compared the performance of these instruments by sequencing an isolate of Escherichia coli O104:H4, which caused an outbreak of food poisoning in Germany in 2011. The MiSeq had the highest throughput per run (1.6 Gb/run, 60 Mb/h) and lowest error rates. The 454 GS Junior generated the longest reads (up to 600 bases) and most contiguous assemblies but had the lowest throughput (70 Mb/run, 9 Mb/h). Run in 100-bp mode, the Ion Torrent PGM had the highest throughput (80–100 Mb/h). Unlike the MiSeq, the Ion Torrent PGM and 454 GS Junior both produced homopolymer-associated indel errors (1.5 and 0.38 errors per 100 bases, respectively).

1,346 citations

Journal ArticleDOI
Joshua Quick1, Nicholas J. Loman1, Sophie Duraffour2, Jared T. Simpson3, Jared T. Simpson4, Ettore Severi5, Ettore Severi6, Lauren A. Cowley, Joseph Akoi Bore2, Raymond Koundouno2, Gytis Dudas7, Amy Mikhail, Nobila Ouedraogo8, Babak Afrough, Amadou Bah9, Jonathan H.J. Baum2, Beate Becker-Ziaja2, Jan Peter Boettcher8, Mar Cabeza-Cabrerizo2, Álvaro Camino-Sánchez2, Lisa L. Carter10, Juliane Doerrbecker2, Theresa Enkirch11, Isabel García-Dorival12, Nicole Hetzelt8, Julia Hinzmann8, Tobias Holm2, Liana E. Kafetzopoulou13, Liana E. Kafetzopoulou5, Michel Koropogui, Abigael Kosgey14, Eeva Kuisma5, Christopher H. Logue5, Antonio Mazzarelli, Sarah Meisel2, Marc Mertens15, Janine Michel8, Didier Ngabo, Katja Nitzsche2, Elisa Pallasch2, Livia Victoria Patrono2, Jasmine Portmann, Johanna Repits16, Natasha Y. Rickett12, Andreas Sachse8, Katrin Singethan17, Inês Vitoriano, Rahel L. Yemanaberhan2, Elsa Gayle Zekeng12, Trina Racine18, Alexander Bello18, Amadou A. Sall19, Ousmane Faye19, Oumar Faye19, N’Faly Magassouba, Cecelia V. Williams20, Victoria Amburgey20, Linda Winona20, Emily Davis21, Jon Gerlach21, Frank Washington21, Vanessa Monteil, Marine Jourdain, Marion Bererd, Alimou Camara, Hermann Somlare, Abdoulaye Camara, Marianne Gerard, Guillaume Bado, Bernard Baillet, Déborah Delaune, Koumpingnin Yacouba Nebie22, Abdoulaye Diarra22, Yacouba Savane22, Raymond Pallawo22, Giovanna Jaramillo Gutierrez23, Natacha Milhano6, Natacha Milhano24, Isabelle Roger22, Christopher Williams, Facinet Yattara, Kuiama Lewandowski, James E. Taylor, Phillip A. Rachwal25, Daniel J. Turner, Georgios Pollakis12, Julian A. Hiscox12, David A. Matthews, Matthew K. O'Shea, Andrew Johnston, Duncan W. Wilson, Emma Hutley, Erasmus Smit5, Antonino Di Caro, Roman Wölfel26, Kilian Stoecker26, Erna Fleischmann26, Martin Gabriel2, Simon A. Weller25, Lamine Koivogui, Boubacar Diallo22, Sakoba Keita, Andrew Rambaut7, Andrew Rambaut27, Pierre Formenty22, Stephan Günther2, Miles W. Carroll 
11 Feb 2016-Nature
TL;DR: This paper presents sequence data and analysis of 142 EBOV samples collected during the period March to October 2015 and shows that real-time genomic surveillance is possible in resource-limited settings and can be established rapidly to monitor outbreaks.
Abstract: A nanopore DNA sequencer is used for real-time genomic surveillance of the Ebola virus epidemic in the field in Guinea; the authors demonstrate that it is possible to pack a genomic surveillance laboratory in a suitcase and transport it to the field for on-site virus sequencing, generating results within 24 hours of sample collection. This paper reports the use of nanopore DNA sequencers (known as MinIONs) for real-time genomic surveillance of the Ebola virus epidemic, in the field in Guinea. The authors demonstrate that it is possible to pack a genomic surveillance laboratory in a suitcase and transport it to the field for on-site virus sequencing, generating results within 24 hours of sample collection. The Ebola virus disease epidemic in West Africa is the largest on record, responsible for over 28,599 cases and more than 11,299 deaths1. Genome sequencing in viral outbreaks is desirable to characterize the infectious agent and determine its evolutionary rate. Genome sequencing also allows the identification of signatures of host adaptation, identification and monitoring of diagnostic targets, and characterization of responses to vaccines and treatments. The Ebola virus (EBOV) genome substitution rate in the Makona strain has been estimated at between 0.87 × 10−3 and 1.42 × 10−3 mutations per site per year. This is equivalent to 16–27 mutations in each genome, meaning that sequences diverge rapidly enough to identify distinct sub-lineages during a prolonged epidemic2,3,4,5,6,7. Genome sequencing provides a high-resolution view of pathogen evolution and is increasingly sought after for outbreak surveillance. Sequence data may be used to guide control measures, but only if the results are generated quickly enough to inform interventions8. Genomic surveillance during the epidemic has been sporadic owing to a lack of local sequencing capacity coupled with practical difficulties transporting samples to remote sequencing facilities9. To address this problem, here we devise a genomic surveillance system that utilizes a novel nanopore DNA sequencing instrument. In April 2015 this system was transported in standard airline luggage to Guinea and used for real-time genomic surveillance of the ongoing epidemic. We present sequence data and analysis of 142 EBOV samples collected during the period March to October 2015. We were able to generate results less than 24 h after receiving an Ebola-positive sample, with the sequencing process taking as little as 15–60 min. We show that real-time genomic surveillance is possible in resource-limited settings and can be established rapidly to monitor outbreaks.

1,187 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Prokka is introduced, a command line software tool to fully annotate a draft bacterial genome in about 10 min on a typical desktop computer, and produces standards-compliant output files for further analysis or viewing in genome browsers.
Abstract: UNLABELLED: The multiplex capability and high yield of current day DNA-sequencing instruments has made bacterial whole genome sequencing a routine affair. The subsequent de novo assembly of reads into contigs has been well addressed. The final step of annotating all relevant genomic features on those contigs can be achieved slowly using existing web- and email-based systems, but these are not applicable for sensitive data or integrating into computational pipelines. Here we introduce Prokka, a command line software tool to fully annotate a draft bacterial genome in about 10 min on a typical desktop computer. It produces standards-compliant output files for further analysis or viewing in genome browsers. AVAILABILITY AND IMPLEMENTATION: Prokka is implemented in Perl and is freely available under an open source GPLv2 license from http://vicbioinformatics.com/.

10,432 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
TL;DR: A set of tools for Cas9-mediated genome editing via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, as well as generation of modified cell lines for downstream functional studies are described.
Abstract: Targeted nucleases are powerful tools for mediating genome alteration with high precision. The RNA-guided Cas9 nuclease from the microbial clustered regularly interspaced short palindromic repeats (CRISPR) adaptive immune system can be used to facilitate efficient genome engineering in eukaryotic cells by simply specifying a 20-nt targeting sequence within its guide RNA. Here we describe a set of tools for Cas9-mediated genome editing via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, as well as generation of modified cell lines for downstream functional studies. To minimize off-target cleavage, we further describe a double-nicking strategy using the Cas9 nickase mutant with paired guide RNAs. This protocol provides experimentally derived guidelines for the selection of target sites, evaluation of cleavage efficiency and analysis of off-target activity. Beginning with target design, gene modifications can be achieved within as little as 1-2 weeks, and modified clonal cell lines can be derived within 2-3 weeks.

8,663 citations

Journal ArticleDOI
Heng Li1
TL;DR: Minimap2 is a general-purpose alignment program to map DNA or long mRNA sequences against a large reference database and is 3-4 times as fast as mainstream short-read mappers at comparable accuracy, and is ≥30 times faster than long-read genomic or cDNA mapper at higher accuracy, surpassing most aligners specialized in one type of alignment.
Abstract: Motivation Recent advances in sequencing technologies promise ultra-long reads of ∼100 kb in average, full-length mRNA or cDNA reads in high throughput and genomic contigs over 100 Mb in length. Existing alignment programs are unable or inefficient to process such data at scale, which presses for the development of new alignment algorithms. Results Minimap2 is a general-purpose alignment program to map DNA or long mRNA sequences against a large reference database. It works with accurate short reads of ≥100 bp in length, ≥1 kb genomic reads at error rate ∼15%, full-length noisy Direct RNA or cDNA reads and assembly contigs or closely related full chromosomes of hundreds of megabases in length. Minimap2 does split-read alignment, employs concave gap cost for long insertions and deletions and introduces new heuristics to reduce spurious alignments. It is 3-4 times as fast as mainstream short-read mappers at comparable accuracy, and is ≥30 times faster than long-read genomic or cDNA mappers at higher accuracy, surpassing most aligners specialized in one type of alignment. Availability and implementation https://github.com/lh3/minimap2. Supplementary information Supplementary data are available at Bioinformatics online.

6,264 citations

Journal ArticleDOI
TL;DR: The results of this study may be used as a guideline for selecting primer pairs with the best overall coverage and phylum spectrum for specific applications, therefore reducing the bias in PCR-based microbial diversity studies.
Abstract: 16S ribosomal RNA gene (rDNA) amplicon analysis remains the standard approach for the cultivation-independent investigation of microbial diversity. The accuracy of these analyses depends strongly on the choice of primers. The overall coverage and phylum spectrum of 175 primers and 512 primer pairs were evaluated in silico with respect to the SILVA 16S/18S rDNA non-redundant reference dataset (SSURef 108 NR). Based on this evaluation a selection of 'best available' primer pairs for Bacteria and Archaea for three amplicon size classes (100-400, 400-1000, ≥ 1000 bp) is provided. The most promising bacterial primer pair (S-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21), with an amplicon size of 464 bp, was experimentally evaluated by comparing the taxonomic distribution of the 16S rDNA amplicons with 16S rDNA fragments from directly sequenced metagenomes. The results of this study may be used as a guideline for selecting primer pairs with the best overall coverage and phylum spectrum for specific applications, therefore reducing the bias in PCR-based microbial diversity studies.

5,346 citations