scispace - formally typeset
Search or ask a question
Author

Nicholas P. Calta

Bio: Nicholas P. Calta is an academic researcher from Lawrence Livermore National Laboratory. The author has contributed to research in topics: Materials science & Band gap. The author has an hindex of 13, co-authored 38 publications receiving 1658 citations. Previous affiliations of Nicholas P. Calta include Northwest University (United States) & Northwestern University.

Papers
More filters
Journal ArticleDOI
TL;DR: The potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications is demonstrated, with austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibiting a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels.
Abstract: Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength-ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.

1,385 citations

Journal ArticleDOI
TL;DR: In situ X-ray imaging and finite element simulations are used to show how detrimental pores form under printing conditions and develop a strategy to suppress them and provide insight into the physics of laser-metal interaction.
Abstract: Laser powder bed fusion additive manufacturing is an emerging 3D printing technique for the fabrication of advanced metal components. Widespread adoption of it and similar additive technologies is hampered by poor understanding of laser-metal interactions under such extreme thermal regimes. Here, we elucidate the mechanism of pore formation and liquid-solid interface dynamics during typical laser powder bed fusion conditions using in situ X-ray imaging and multi-physics simulations. Pores are revealed to form during changes in laser scan velocity due to the rapid formation then collapse of deep keyhole depressions in the surface which traps inert shielding gas in the solidifying metal. We develop a universal mitigation strategy which eliminates this pore formation process and improves the geometric quality of melt tracks. Our results provide insight into the physics of laser-metal interaction and demonstrate the potential for science-based approaches to improve confidence in components produced by laser powder bed fusion. Laser-matter interactions during laser powder bed fusion additive manufacturing remain poorly understood. Here, the authors combine in situ X-ray imaging and finite element simulations to show how detrimental pores form under printing conditions and develop a strategy to suppress them.

377 citations

Journal ArticleDOI
08 May 2020-Science
TL;DR: High-fidelity simulations are used to capture fast multitransient dynamics at the meso-nanosecond scale and discovered new spatter-induced defect formation mechanisms that depend on the scan strategy and a competition between laser shadowing and expulsion that will help improve build reliability.
Abstract: State-of-the-art metal 3D printers promise to revolutionize manufacturing, yet they have not reached optimal operational reliability. The challenge is to control complex laser-powder-melt pool interdependency (dependent upon each other) dynamics. We used high-fidelity simulations, coupled with synchrotron experiments, to capture fast multitransient dynamics at the meso-nanosecond scale and discovered new spatter-induced defect formation mechanisms that depend on the scan strategy and a competition between laser shadowing and expulsion. We derived criteria to stabilize the melt pool dynamics and minimize defects. This will help improve build reliability.

255 citations

Journal ArticleDOI
TL;DR: In this article, the tensile behavior of L-PBF Ti-6Al-4V at quasi-static strain rate and room temperature was studied using in situ synchrotron X-ray diffraction and computed tomography (SXCT) and the results revealed that the tensil yield strength and uniform elongation are mainly dictated by the as-built microstructure, while the strain-to-failure is sensitive to the porosity, even in very high density samples (>99.5%).

151 citations

Journal ArticleDOI
TL;DR: A new p-type thermoelectric material, CsAg5 Te3, is presented that exhibits ultralow lattice thermal conductivity and is attributed to a previously unrecognized phonon scattering mechanism that involves the concerted rattling of a group of Ag ions that strongly raises the Grüneisen parameters of the material.
Abstract: Thermoelectric (TE) materials convert heat energy directly into electricity, and introducing new materials with high conversion efficiency is a great challenge because of the rare combination of interdependent electrical and thermal transport properties required to be present in a single material. The TE efficiency is defined by the figure of merit ZT=(S2σ) T/κ, where S is the Seebeck coefficient, σ is the electrical conductivity, κ is the total thermal conductivity, and T is the absolute temperature. A new p-type thermoelectric material, CsAg5Te3, is presented that exhibits ultralow lattice thermal conductivity (ca. 0.18 Wm−1 K−1) and a high figure of merit of about 1.5 at 727 K. The lattice thermal conductivity is the lowest among state-of-the-art thermoelectrics; it is attributed to a previously unrecognized phonon scattering mechanism that involves the concerted rattling of a group of Ag ions that strongly raises the Gruneisen parameters of the material.

137 citations


Cited by
More filters
01 Jan 1987

991 citations

Journal ArticleDOI
22 Feb 2019-Science
TL;DR: The direct visualization of the keyhole morphology and dynamics with high-energy x-rays shows that (i) keyholes are present across the range of power and scanning velocity used in laser powder bed fusion; and (ii) there is a well-defined threshold from conduction mode to keyhole based on laser power density.
Abstract: We used ultrahigh-speed synchrotron x-ray imaging to quantify the phenomenon of vapor depressions (also known as keyholes) during laser melting of metals as practiced in additive manufacturing. Although expected from welding and inferred from postmortem cross sections of fusion zones, the direct visualization of the keyhole morphology and dynamics with high-energy x-rays shows that (i) keyholes are present across the range of power and scanning velocity used in laser powder bed fusion; (ii) there is a well-defined threshold from conduction mode to keyhole based on laser power density; and (iii) the transition follows the sequence of vaporization, depression of the liquid surface, instability, and then deep keyhole formation. These and other aspects provide a physical basis for three-dimensional printing in laser powder bed machines.

523 citations

Journal ArticleDOI
TL;DR: In this paper, an overview of the different kinds of steels in use in fusion-based AM processes and present their microstructures, their mechanical and corrosion properties, their heat treatments and their intended applications.
Abstract: Today, a large number of different steels are being processed by Additive Manufacturing (AM) methods. The different matrix microstructure components and phases (austenite, ferrite, martensite) and the various precipitation phases (intermetallic precipitates, carbides) lend a huge variability in microstructure and properties to this class of alloys. This is true for AM-produced steels just as it is for conventionally-produced steels. However, steels are subjected during AM processing to time-temperature profiles which are very different from the ones encountered in conventional process routes, and hence the resulting microstructures differ strongly as well. This includes a very fine and highly morphologically and crystallographically textured microstructure as a result of high solidification rates as well as non-equilibrium phases in the as-processed state. Such a microstructure, in turn, necessitates additional or adapted post-AM heat treatments and alloy design adjustments. In this review, we give an overview over the different kinds of steels in use in fusion-based AM processes and present their microstructures, their mechanical and corrosion properties, their heat treatments and their intended applications. This includes austenitic, duplex, martensitic and precipitation-hardening stainless steels, TRIP/TWIP steels, maraging and carbon-bearing tool steels and ODS steels. We identify areas with missing information in the literature and assess which properties of AM steels exceed those of conventionally-produced ones, or, conversely, which properties fall behind. We close our review with a short summary of iron-base alloys with functional properties and their application perspectives in Additive Manufacturing.

467 citations

Journal ArticleDOI
TL;DR: This work uses lamellar microstructure inherited from casting, rolling, and annealing to produce an ultrafine duplex eutectic high entropy alloy with outstanding properties and widens the design toolbox for high-performance materials based upon EHEAs.
Abstract: Realizing improved strength–ductility synergy in eutectic alloys acting as in situ composite materials remains a challenge in conventional eutectic systems, which is why eutectic high-entropy alloys (EHEAs), a newly-emerging multi-principal-element eutectic category, may offer wider in situ composite possibilities. Here, we use an AlCoCrFeNi2.1 EHEA to engineer an ultrafine-grained duplex microstructure that deliberately inherits its composite lamellar nature by tailored thermo-mechanical processing to achieve property combinations which are not accessible to previously-reported reinforcement methodologies. The as-prepared samples exhibit hierarchically-structural heterogeneity due to phase decomposition, and the improved mechanical response during deformation is attributed to both a two-hierarchical constraint effect and a self-generated microcrack-arresting mechanism. This work provides a pathway for strengthening eutectic alloys and widens the design toolbox for high-performance materials based upon EHEAs. Producing in situ composite materials with superior strength and ductility has long been a challenge. Here, the authors use lamellar microstructure inherited from casting, rolling, and annealing to produce an ultrafine duplex eutectic high entropy alloy with outstanding properties.

451 citations

Journal ArticleDOI
TL;DR: In this article, the effects of major process parameters on build quality (porosity, residual stress, and composition changes) and materials properties (microstructure and microsegregation) are reviewed.

398 citations