scispace - formally typeset
Search or ask a question
Author

Nicholas P. Warner

Bio: Nicholas P. Warner is an academic researcher from University of Southern California. The author has contributed to research in topics: Supergravity & Supersymmetry. The author has an hindex of 76, co-authored 291 publications receiving 19251 citations. Previous affiliations of Nicholas P. Warner include Pierre-and-Marie-Curie University & University of Cambridge.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a supersymmetric kink solution in fivedimensional N = 8 gauged supergravity was derived, where the kink interpolates between an exterior anti-de Sitter region with maximal supersymmetry and an interior anti-De Sitter regions with one quarter of the maximal supersymmetry.
Abstract: We obtain first order equations that determine a supersymmetric kink solution in fivedimensional N = 8 gauged supergravity. The kink interpolates between an exterior anti-de Sitter region with maximal supersymmetry and an interior anti-de Sitter region with one quarter of the maximal supersymmetry. One eighth of supersymmetry is preserved by the kink as a whole. We interpret it as describing the renormalization group flow in N = 4 super-Yang-Mills theory broken to an N = 1 theory by the addition of a mass term for one of the three adjoint chiral superfields. A detailed correspondence is obtained between fields of bulk supergravity in the interior anti-de Sitter region and composite operators of the infrared field theory. We also point out that the truncation used to find the reduced symmetry critical point can be extended to obtain a new N = 4 gauged supergravity theory holographically dual to a sector of N = 2 gauge theories based on quiver diagrams. We consider more general kink geometries and construct a c-function that is positive and monotonic if a weak energy condition holds in the bulk gravity theory. For evendimensional boundaries, the c-function coincides with the trace anomaly coefficients of the holographically related field theory in limits where conformal invariance is recovered.

1,159 citations

Journal ArticleDOI
TL;DR: In this paper, the properties of chiral operators in N = 2 superconformal theories were investigated under a one-parameter family of twists generated by the U(1) current.

984 citations

Journal ArticleDOI
TL;DR: In this article, the authors show how the Riemann surface of N = 2 Yang-Mills field theory arises in type II string compactifications on Calabi-Yau threefolds.

500 citations

Book ChapterDOI
TL;DR: In this paper, the authors describe the Born-Infeld construction of three-charge supertubes with two dipole charges and discuss the general method of constructing three charge solutions in five dimensions.
Abstract: In this review article, we describe some of the recent progress towards the construction and analysis of three-charge configurations in string theory and supergravity. We begin by describing the Born-Infeld construction of three-charge supertubes with two dipole charges and then discuss the general method of constructing three-charge solutions in five dimensions. We explain in detail the use of these methods to construct black rings, black holes, as well as smooth microstate geometries with black hole and black ring charges, but with no horizon. We present arguments that many of these microstate geometries are dual to boundary states that belong to the same sector of the D1-D5-P CFT as the typical states. We end with an extended discussion of the implications of this work for the physics of black holes in string theory.

497 citations

Journal ArticleDOI
TL;DR: The authors showed that the study of catastrophes is a powerful tool in the classification of conformal theories, and applied it to N = 2 superconformal models, including the minimal superconsformal model.

438 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that the Kaluza-Klein modes of Type IIB supergravity on $AdS_5\times {\bf S}^5$ match with the chiral operators of the super Yang-Mills theory in four dimensions.
Abstract: Recently, it has been proposed by Maldacena that large $N$ limits of certain conformal field theories in $d$ dimensions can be described in terms of supergravity (and string theory) on the product of $d+1$-dimensional $AdS$ space with a compact manifold. Here we elaborate on this idea and propose a precise correspondence between conformal field theory observables and those of supergravity: correlation functions in conformal field theory are given by the dependence of the supergravity action on the asymptotic behavior at infinity. In particular, dimensions of operators in conformal field theory are given by masses of particles in supergravity. As quantitative confirmation of this correspondence, we note that the Kaluza-Klein modes of Type IIB supergravity on $AdS_5\times {\bf S}^5$ match with the chiral operators of ${\cal N}=4$ super Yang-Mills theory in four dimensions. With some further assumptions, one can deduce a Hamiltonian version of the correspondence and show that the ${\cal N}=4$ theory has a large $N$ phase transition related to the thermodynamics of $AdS$ black holes.

14,084 citations

Posted Content
TL;DR: In this article, a correspondence between conformal field theory observables and those of supergravity was proposed, where correlation functions in conformal fields are given by the dependence of the supergravity action on the asymptotic behavior at infinity.
Abstract: Recently, it has been proposed by Maldacena that large $N$ limits of certain conformal field theories in $d$ dimensions can be described in terms of supergravity (and string theory) on the product of $d+1$-dimensional $AdS$ space with a compact manifold. Here we elaborate on this idea and propose a precise correspondence between conformal field theory observables and those of supergravity: correlation functions in conformal field theory are given by the dependence of the supergravity action on the asymptotic behavior at infinity. In particular, dimensions of operators in conformal field theory are given by masses of particles in supergravity. As quantitative confirmation of this correspondence, we note that the Kaluza-Klein modes of Type IIB supergravity on $AdS_5\times {\bf S}^5$ match with the chiral operators of $\N=4$ super Yang-Mills theory in four dimensions. With some further assumptions, one can deduce a Hamiltonian version of the correspondence and show that the $\N=4$ theory has a large $N$ phase transition related to the thermodynamics of $AdS$ black holes.

8,751 citations

Journal ArticleDOI
TL;DR: In this paper, the holographic correspondence between field theories and string/M theory is discussed, focusing on the relation between compactifications of string theory on anti-de Sitter spaces and conformal field theories.

5,610 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
TL;DR: The Bekenstein-Hawking area entropy relation S BH = A 4 was derived for a class of five-dimensional extremal black holes in string theory by counting the degeneracy of BPS solition bound states.

3,497 citations