scispace - formally typeset
Search or ask a question
Author

Nicholas R. Cozzarelli

Bio: Nicholas R. Cozzarelli is an academic researcher from University of Chicago. The author has contributed to research in topics: DNA & DNA replication. The author has an hindex of 15, co-authored 17 publications receiving 1936 citations.

Papers
More filters
Journal ArticleDOI
29 Feb 1980-Science
TL;DR: Gyrase is a prototype for a growing class of prokaryotic and eukaryotic topoisomerases that interconvert complex forms by way of transient double-strand breaks.
Abstract: Negative supercoiling of bacterial DNA by DNA gyrase influences all metabolic processes involving DNA and is essential for replication. Gyrase supercoils DNA by a mechanism called sign inversion, whereby a positive supercoil is directly inverted to a negative one by passing a DNA segment through a transient double-strand break. Reversal of this scheme relaxes DNA, and this mechanism also accounts for the ability of gyrase to catenate and uncatenate DNA rings. Each round of supercoiling is driven by a conformational change induced by adenosine triphosphate (ATP) binding: ATP hydrolysis permits fresh cycles. The inhibition of gyrase by two classes of antimicrobials reflects its composition from two reversibly associated subunits. The A subunit is particularly associated with the concerted breakage-and-rejoining of DNA and the B subunit mediates energy transduction. Gyrase is a prototype for a growing class of prokaryotic and eukaryotic topoisomerases that interconvert complex forms by way of transient double-strand breaks.

644 citations

Journal ArticleDOI
TL;DR: Temperature-sensitive nalA mutants of Escherichia coli have been used to investigate the structure and functions of deoxyribonucleic acid (DNA) gyrase, proving definitively that n alA is the structural gene for subunit A and the nalidixic acid target are one and the same protein.
Abstract: Temperature-sensitive nalA mutants of Escherichia coli have been used to investigate the structure and functions of deoxyribonucleic acid (DNA) gyrase. Extracts of one such mutant (nalA43) had thermosensitive DNA gyrase subunit A activity but normal gyrase subunit B activity, proving definitively that nalA is the structural gene for subunit A. Extracts of a second nalA (Ts) mutant (nalA45) had a 50-fold deficiency of gyrase subunit A activity. The residual DNA supertwisting was catalyzed by the mutant DNA gyrase rather than by a novel supertwisting enzyme. The nalA45(Ts) extract was also deficient in the nalidixic acid target, which is defined as the protein necessary to confer drug sensitivity to in vitro DNA replication directed by a nalidixic acid-resistant mutant extract. Thus, gyrase subunit A and the nalidixic acid target are one and the same protein, the nalA gene product. Shift of the nalA43(Ts) mutant to a nonpermissive temperature resulted in a precipitous decline in the rate of [(3)H]thymidine incorporation, demonstrating an obligatory role of the nalA gene product in DNA replication. The rates of incorporation of [(3)H]uridine pulses and continuously administered [(3)H]uracil were quickly reduced approximately twofold upon temperature shift of the nalA43(Ts) mutant, and therefore some but not all transcription requires the nalA gene product. The thermosensitive growth of bacteriophages phiX174 and T4 in the nalA43(Ts) host shows that these phages depend on the host nalA gene product. In contrast, the growth of phage T7 was strongly inhibited by nalidixic acid but essentially unaffected by the nalA43(Ts) mutation. The inhibition of T7 growth by nalidixic acid was, however, eliminated by temperature inactivation of the nal43 gene product. Therefore, nalidixic acid may block T7 growth by a corruption rather than a simple elimination of the nalidixic acid target. Possible mechanisms for such a corruption are considered, and their relevance to the puzzling dominance of drug sensitivity is discussed.

328 citations

Journal ArticleDOI
01 May 1980-Cell
TL;DR: Gyrase is representative of a general class of enzymes, found in both procaryotic and eucaryotic cells, that facilitate diffusion of duplex DNA segments through each other and may solve topological problems arising from the replication, recombination and condensation of DNA.

212 citations

Journal ArticleDOI
01 May 1979-Cell
TL;DR: Analysis of cleavage fragments showed that cutting between a TG doublet is common to most, or all, gyrase cleavages, and this diverse recognition sequence with common elements is a pattern shared with several other specific nucleic acid-protein interactions.

181 citations

Journal ArticleDOI
TL;DR: The results suggest that adenosine 3',5'-monophosphate results in induction of excessively high levels of an early rate-limiting step in xylose metabolism, which may be the transport ofxylose into the cell.
Abstract: Wild-type strains of Escherichia coli K-12 accumulate toxic concentrations of methylglyoxal when grown in medium containing adenosine 3′,5′-monophosphate and either d-xylose, l-arabinose, or d-glucose-6-phosphate, independent of the presence of other carbon sources. Mutations at a locus called cxm specifically block methylglyoxal formation from xylose in the presence of adenosine 3′,5′-monophosphate. Accumulation in medium containing xylose, studied in some detail, is dependent on the ability to utilize xylose and is associated with an increased rate of xylose utilization without changes in levels of xylose isomerase. These results suggest that adenosine 3′,5′-monophosphate results in induction of excessively high levels of an early rate-limiting step in xylose metabolism. This step may be the transport of xylose into the cell. The resulting excessive rates of xylose catabolism could stimulate methylglyoxal formation by overburdening late steps in glycolysis.

95 citations


Cited by
More filters
Journal Article
TL;DR: A role for the wild-type p53 protein in the inhibition of DNA synthesis that follows DNA damage is suggested and a new mechanism for how the loss of wild- type p53 might contribute to tumorigenesis is suggested.
Abstract: The inhibition of replicative DNA synthesis that follows DNA damage may be critical for avoiding genetic lesions that could contribute to cellular transformation. Exposure of ML-1 myeloblastic leukemia cells to nonlethal doses of the DNA damaging agents, gamma-irradiation or actinomycin D, causes a transient inhibition of replicative DNA synthesis via both G1 and G2 arrests. Levels of p53 protein in ML-1 cells and in proliferating normal bone marrow myeloid progenitor cells increase and decrease in temporal association with the G1 arrest. In contrast, the S-phase arrest of ML-1 cells caused by exposure to the anti-metabolite, cytosine arabinoside, which does not directly damage DNA, is not associated with a significant change in p53 protein levels. Caffeine treatment blocks both the G1 arrest and the induction of p53 protein after gamma-irradiation, thus suggesting that blocking the induction of p53 protein may contribute to the previously observed effects of caffeine on cell cycle changes after DNA damage. Unlike ML-1 cells and normal bone marrow myeloid progenitor cells, hematopoietic cells that either lack p53 gene expression or overexpress a mutant form of the p53 gene do not exhibit a G1 arrest after gamma-irradiation; however, the G2 arrest is unaffected by the status of the p53 gene. These results suggest a role for the wild-type p53 protein in the inhibition of DNA synthesis that follows DNA damage and thus suggest a new mechanism for how the loss of wild-type p53 might contribute to tumorigenesis.

3,878 citations

Journal ArticleDOI
TL;DR: Quinolone-topoisomerase biology is providing a model for understanding aspects of host-parasite interactions and providing ways to investigate manipulation of the bacterial chromosome by topoisomerases.
Abstract: For many years, DNA gyrase was thought to be responsible both for unlinking replicated daughter chromosomes and for controlling negative superhelical tension in bacterial DNA. However, in 1990 a homolog of gyrase, topoisomerase IV, that had a potent decatenating activity was discovered. It is now clear that topoisomerase IV, rather than gyrase, is responsible for decatenation of interlinked chromosomes. Moreover, topoisomerase IV is a target of the 4-quinolones, antibacterial agents that had previously been thought to target only gyrase. The key event in quinolone action is reversible trapping of gyrase-DNA and topoisomerase IV-DNA complexes. Complex formation with gyrase is followed by a rapid, reversible inhibition of DNA synthesis, cessation of growth, and induction of the SOS response. At higher drug concentrations, cell death occurs as double-strand DNA breaks are released from trapped gyrase and/or topoisomerase IV complexes. Repair of quinolone-induced DNA damage occurs largely via recombination pathways. In many gram-negative bacteria, resistance to moderate levels of quinolone arises from mutation of the gyrase A protein and resistance to high levels of quinolone arises from mutation of a second gyrase and/or topoisomerase IV site. For some gram-positive bacteria, the situation is reversed: primary resistance occurs through changes in topoisomerase IV while gyrase changes give additional resistance. Gyrase is also trapped on DNA by lethal gene products of certain large, low-copy-number plasmids. Thus, quinolone-topoisomerase biology is providing a model for understanding aspects of host-parasite interactions and providing ways to investigate manipulation of the bacterial chromosome by topoisomerases.

1,436 citations

Journal ArticleDOI
TL;DR: This review focuses on the biochemical mechanisms underlying these steps, with particular emphases on the activities of the proteins involved and on the integration of these activities into likely biochemical pathways for recombination.

1,255 citations

Journal ArticleDOI
TL;DR: This article corrects the article on p. 182 in vol.

1,196 citations