scispace - formally typeset
Search or ask a question
Author

Nicholas Rodenberg

Bio: Nicholas Rodenberg is an academic researcher from University of Chicago. The author has contributed to research in topics: Particle & Overburden pressure. The author has an hindex of 4, co-authored 5 publications receiving 1688 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that volume changes of less than 0.5% suffice to grip objects reliably and hold them with forces exceeding many times their weight, and opens up new possibilities for the design of simple, yet highly adaptive systems that excel at fast gripping of complex objects.
Abstract: Gripping and holding of objects are key tasks for robotic manipulators. The development of universal grippers able to pick up unfamiliar objects of widely varying shape and surface properties remains, however, challenging. Most current designs are based on the multifingered hand, but this approach introduces hardware and software complexities. These include large numbers of controllable joints, the need for force sensing if objects are to be handled securely without crushing them, and the computational overhead to decide how much stress each finger should apply and where. Here we demonstrate a completely different approach to a universal gripper. Individual fingers are replaced by a single mass of granular material that, when pressed onto a target object, flows around it and conforms to its shape. Upon application of a vacuum the granular material contracts and hardens quickly to pinch and hold the object without requiring sensory feedback. We find that volume changes of less than 0.5% suffice to grip objects reliably and hold them with forces exceeding many times their weight. We show that the operating principle is the ability of granular materials to transition between an unjammed, deformable state and a jammed state with solid-like rigidity. We delineate three separate mechanisms, friction, suction, and interlocking, that contribute to the gripping force. Using a simple model we relate each of them to the mechanical strength of the jammed state. This advance opens up new possibilities for the design of simple, yet highly adaptive systems that excel at fast gripping of complex objects.

1,221 citations

Journal ArticleDOI
TL;DR: A simple passive universal gripper, consisting of a mass of granular material encased in an elastic membrane, that can rapidly grip and release a wide range of objects that are typically challenging for universal grippers, such as flat objects, soft objects, or objects with complex geometries is described.
Abstract: We describe a simple passive universal gripper, consisting of a mass of granular material encased in an elastic membrane. Using a combination of positive and negative pressure, the gripper can rapidly grip and release a wide range of objects that are typically challenging for universal grippers, such as flat objects, soft objects, or objects with complex geometries. The gripper passively conforms to the shape of a target object, then vacuum-hardens to grip it rigidly, later utilizing positive pressure to reverse this transition-releasing the object and returning to a deformable state. We describe the mechanical design and implementation of this gripper and quantify its performance in real-world testing situations. By using both positive and negative pressure, we demonstrate performance increases of up to 85% in reliability, 25% in error tolerance, and the added capability to shoot objects by fast ejection. In addition, multiple objects are gripped and placed at once while maintaining their relative distance and orientation. We conclude by comparing the performance of the proposed gripper with others in the field.

574 citations

Proceedings ArticleDOI
10 Oct 2009
TL;DR: A new paradigm in soft robots is presented that utilizes jamming of a granular medium and the concept of activators (as opposed to actuators) is presented to jam and unjam cells that modulate the direction and amount of work done by a single central actuator.
Abstract: A soft, mobile, morphing robot is a desirable platform for traversing rough terrain and navigating into small holes. In this work, a new paradigm in soft robots is presented that utilizes jamming of a granular medium. The concept of activators (as opposed to actuators) is presented to jam and unjam cells that then modulate the direction and amount of work done by a single central actuator. A prototype jamming soft robot utilizing JSEL (Jamming Skin Enabled Locomotion) with external power and control is discussed and both morphing results and mobility (rolling) results are presented. Future directions for the design of a soft, hole traversing robot are discussed, as is the role and promises of jamming as an enabling technology for soft robotics.

191 citations

Journal ArticleDOI
TL;DR: It is found that particle shape controls the details of the stress-strain curves and can be used to tune packing stiffness and yielding and identify trends among the various shapes that allow for designing a packing's aggregate behavior.
Abstract: We present measurements of the stress response of packings formed from a wide range of particle shapes. Besides spheres these include convex shapes such as the Platonic solids, truncated tetrahedra, and triangular bipyramids, as well as more complex, non-convex geometries such as hexapods with various arm lengths, dolos, and tetrahedral frames. All particles were 3D-printed in hard resin. Well-defined initial packing states were established through preconditioning by cyclic loading under given confinement pressure. Starting from such initial states, stress–strain relationships for axial compression were obtained at four different confining pressures for each particle type. While confining pressure has the largest overall effect on the mechanical response, we find that particle shape controls the details of the stress–strain curves and can be used to tune packing stiffness and yielding. By correlating the experimentally measured values for the effective Young's modulus under compression, yield stress and energy loss during cyclic loading, we identify trends among the various shapes that allow for designing a packing's aggregate behavior.

158 citations

Journal ArticleDOI
TL;DR: In this article, the authors present measurements of the stress response of packings formed from a wide range of particle shapes, including convex shapes such as the Platonic solids, truncated tetrahedra, and triangular bipyramids, as well as more complex, nonconvex geometries such as hexapods with various arm lengths, dolos, and tetrahedral frames.
Abstract: We present measurements of the stress response of packings formed from a wide range of particle shapes. Besides spheres these include convex shapes such as the Platonic solids, truncated tetrahedra, and triangular bipyramids, as well as more complex, non-convex geometries such as hexapods with various arm lengths, dolos, and tetrahedral frames. All particles were 3D-printed in hard resin. Well-defined initial packing states were established through preconditioning by cyclic loading under given confinement pressure. Starting from such initial states, stress-strain relationships for axial compression were obtained at four different confining pressures for each particle type. While confining pressure has the largest overall effect on the mechanical response, we find that particle shape controls the details of the stress-strain curves and can be used to tune packing stiffness and yielding. By correlating the experimentally measured values for the effective Young's modulus under compression, yield stress and energy loss during cyclic loading, we identify trends among the various shapes that allow for designing a packing's aggregate behavior.

36 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this paper, a Gaussian process classifier was used to estimate the probability of computerisation for 702 detailed occupations, and the expected impacts of future computerisation on US labour market outcomes, with the primary objective of analyzing the number of jobs at risk and the relationship between an occupations probability of computing, wages and educational attainment.

4,853 citations

Journal ArticleDOI
28 May 2015-Nature
TL;DR: This Review discusses recent developments in the emerging field of soft robotics, and explores the design and control of soft-bodied robots composed of compliant materials.
Abstract: Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modelled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates such as humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics.

3,824 citations

Journal ArticleDOI
TL;DR: Emerging soft-bodied robotic systems are reviewed to endow robots with new, bioinspired capabilities that permit adaptive, flexible interactions with unpredictable environments and to reduce the mechanical and algorithmic complexity involved in robot design.

1,604 citations

Journal ArticleDOI
25 Aug 2016-Nature
TL;DR: An untethered operation of a robot composed solely of soft materials that autonomously regulates fluid flow and, hence, catalytic decomposition of an on-board monopropellant fuel supply is reported.
Abstract: An untethered, entirely soft robot is designed to operate autonomously by combining microfluidic logic and hydrogen peroxide as an on-board fuel supply. Soft robotics have so far necessarily included some 'hard' or metallic elements, in particular in the form of batteries or wiring, to connect them to an external power source. Additionally, external wiring tethering them to a power source places limits on the autonomy of such robots. Now Jennifer Lewis and colleagues have combined a 3D-printed soft polymeric robot with microfluidic logic and hydrogen peroxide as an onboard fuel to produce an eight-armed robot — an 'octobot' — that actuates its arms, without the incorporation of any hard structures. The hydrogen peroxide decomposes in the presence of a platinum catalyst to produce oxygen and a volumetric expansion that fills bladders embedded within the arms of the octobot. The design of the fuel reservoirs, microfluidic channels and vents to release the gas means that two sets of arms actuate cyclically. Soft robots possess many attributes that are difficult, if not impossible, to achieve with conventional robots composed of rigid materials1,2. Yet, despite recent advances, soft robots must still be tethered to hard robotic control systems and power sources3,4,5,6,7,8,9,10. New strategies for creating completely soft robots, including soft analogues of these crucial components, are needed to realize their full potential. Here we report the untethered operation of a robot composed solely of soft materials. The robot is controlled with microfluidic logic11 that autonomously regulates fluid flow and, hence, catalytic decomposition of an on-board monopropellant fuel supply. Gas generated from the fuel decomposition inflates fluidic networks downstream of the reaction sites, resulting in actuation12. The body and microfluidic logic of the robot are fabricated using moulding and soft lithography, respectively, and the pneumatic actuator networks, on-board fuel reservoirs and catalytic reaction chambers needed for movement are patterned within the body via a multi-material, embedded 3D printing technique13,14. The fluidic and elastomeric architectures required for function span several orders of magnitude from the microscale to the macroscale. Our integrated design and rapid fabrication approach enables the programmable assembly of multiple materials within this architecture, laying the foundation for completely soft, autonomous robots.

1,491 citations