scispace - formally typeset
Search or ask a question
Author

Nicola Donato

Other affiliations: University of Palermo
Bio: Nicola Donato is an academic researcher from University of Messina. The author has contributed to research in topics: Computer science & Equivalent circuit. The author has an hindex of 29, co-authored 199 publications receiving 3025 citations. Previous affiliations of Nicola Donato include University of Palermo.


Papers
More filters
Journal ArticleDOI
TL;DR: A nanocomposite consisting of well-dispersed SnO(2) and Pt nanoparticles on reduced graphene oxide exhibited very high responses to hydrogen at concentrations between 0.5 and 3% in air, with response times of 3-7 s and recovery times of 2-6”s.
Abstract: There's something in the air … A nanocomposite consisting of well-dispersed SnO(2) and Pt nanoparticles on reduced graphene oxide (see the high-resolution TEM image) exhibited very high responses to hydrogen at concentrations between 0.5 and 3% in air, with response times of 3-7 s and recovery times of 2-6 s. The sensor was prepared by a straightforward microwave-assisted non-aqueous sol-gel approach.

265 citations

Journal ArticleDOI
TL;DR: In this paper, a one-pot microwave-assisted non-aqueous sol-gel method was used to synthesize n-SnO2/reduced graphene oxide (RGO) nanocomposites, in which partially reduction of the graphene oxide and nanoparticle formation occurs simultaneously.
Abstract: Crystalline SnO2/reduced graphene oxide (RGO) nanocomposites were synthesized by a one-pot microwave-assisted non-aqueous sol–gel method, in which partially reduction of the graphene oxide and nanoparticle formation occurs simultaneously. Composite samples with different SnO2 loadings on the RGO were prepared and characterized by TEM, XRD, TGA-DSC and FT-IR. Chemoresistive devices, consisting of a thick layer of the samples synthesized on alumina substrates provided with Pt interdigitated electrodes, were fabricated and their electrical and NO2 sensing characteristics investigated. The results obtained have shown the possibility of a fine tuning of the sensing characteristics of the devices fabricated by simply controlling the amount of metal oxide nanoparticles loaded onto the reduced graphene oxide sheets. This was explained on the basis of the critical role played by the n-SnO2/p-RGO heterojunction formed on the composite materials.

160 citations

Journal ArticleDOI
TL;DR: In this article, a simple sol-gel based electrospinning method has been applied for the synthesis of vanadium oxide/polyvinyl acetate (V2O5/PVAC) fibers for gas sensing applications.
Abstract: A simple sol–gel based electrospinning method has been applied for the synthesis of vanadium oxide/polyvinyl acetate (V2O5/PVAC) fibers for gas sensing applications. The pure phase V2O5 has been subsequently obtained by removing the polymer phase via annealing of the composite fibers in air. The as-spun V2O5/PVAC composite fibers and related products of annealing have been widely studied to characterize their morphological and microstructural properties by TG-DSC, XRD, DRIFT and SEM investigations. The application of the produced V2O5 fibers as high performance ammonia resistive sensors has been demonstrated. Reversible electrical changes have been observed by exposing V2O5 fibers deposited on interdigited electrodes to sub-ppm concentrations of ammonia gas. The fabricated V2O5 sensor has shown the highest response to ammonia gas at 200–250 °C, with a response and recovery time of about 50 and 350 s, respectively. A linear dependence of the response value on the ammonia concentration has been observed in the range of 0.85–8.5 ppm, with an estimated lower detection limit of about 100 ppb.

133 citations

Journal ArticleDOI
TL;DR: In this article, a simple wet chemical process assisted by microwave has been investigated for the synthesis of ZnO nanostructures for sensing applications, which have been tested for CO gas monitoring by depositing them as thick films on an interdigitated alumina substrate and evaluating the surface resistance of the deposited layer as a function of operating temperature and CO concentrations.
Abstract: A simple wet chemical process assisted by microwave has been investigated for the synthesis of ZnO nanostructures for sensing applications. Characterization results have shown that microwave irradiation is able to quickly convert the reaction product zinc hydroxide into single phase crystalline ZnO. Different ZnO nanostructures (spherical-, flower- and star-like) have been prepared by adapting the experimental conditions. These ZnO nanostructures have been tested for CO gas monitoring by depositing them as thick films on an interdigitated alumina substrate and evaluating the surface resistance of the deposited layer as a function of operating temperature and CO concentrations. The gas sensitivity tests have demonstrated that the ZnO nanostructures, especially flower-like morphology, exhibit high sensitivity to CO proving their applicability in gas sensors. The role of the nanostructure on the sensing properties of ZnO is also discussed.

120 citations

Journal ArticleDOI
TL;DR: In this article, flexible sensors for the detection of ethanol at room temperature have been developed by depositing sensitive layers consisting of ITO nanopowder dispersed into poly-diallyldimethylammonium chloride (PDDAC), on the top of interdigitated electrodes based on conductive carbon nanotubes, previously printed onto flexible glossy paper substrates.
Abstract: Flexible sensors for the detection of ethanol at room temperature have been developed by depositing sensitive layers consisting of ITO nanopowder dispersed into poly-diallyldimethylammonium chloride (PDDAC), on the top of interdigitated electrodes based on conductive carbon nanotubes, previously printed onto flexible glossy paper substrates. The morphology and the microstructure of the interdigitated electrodes together with organic–inorganic sensing layer have been investigated by means of SEM, XRD and FT-IR. The electrical behaviour of the developed sensors at room temperature in response to low ethanol concentrations has been discussed as object of our research. The good ethanol sensing properties exhibited at room temperature by the composite film was supposed to originate from the electrostatic interaction occurring between the positively charged PDDAC polyelectrolyte and negatively charged ITO particles.

106 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Electronic networks comprised of flexible, stretchable, and robust devices that are compatible with large-area implementation and integrated with multiple functionalities is a testament to the progress in developing an electronic skin akin to human skin.
Abstract: Human skin is a remarkable organ. It consists of an integrated, stretchable network of sensors that relay information about tactile and thermal stimuli to the brain, allowing us to maneuver within our environment safely and effectively. Interest in large-area networks of electronic devices inspired by human skin is motivated by the promise of creating autonomous intelligent robots and biomimetic prosthetics, among other applications. The development of electronic networks comprised of flexible, stretchable, and robust devices that are compatible with large-area implementation and integrated with multiple functionalities is a testament to the progress in developing an electronic skin (e-skin) akin to human skin. E-skins are already capable of providing augmented performance over their organic counterpart, both in superior spatial resolution and thermal sensitivity. They could be further improved through the incorporation of additional functionalities (e.g., chemical and biological sensing) and desired properties (e.g., biodegradability and self-powering). Continued rapid progress in this area is promising for the development of a fully integrated e-skin in the near future.

1,950 citations

Journal Article

[...]

1,682 citations

Journal ArticleDOI
TL;DR: It is demonstrated that black TiO(2) nanoparticles obtained through a one-step reduction/crystallization process exhibit a bandgap of only 1.85 eV, which matches well with visible light absorption.
Abstract: The increasing need for new materials capable of solar fuel generation is central in the development of a green energy economy. In this contribution, we demonstrate that black TiO2 nanoparticles obtained through a one-step reduction/crystallization process exhibit a bandgap of only 1.85 eV, which matches well with visible light absorption. The electronic structure of black TiO2 nanoparticles is determined by the unique crystalline and defective core/disordered shell morphology. We introduce new insights that will be useful for the design of nanostructured photocatalysts for energy applications.

1,403 citations

Journal ArticleDOI
TL;DR: Puurunen et al. as discussed by the authors summarized the two-reactant ALD processes to grow inorganic materials developed to-date, updating the information of an earlier review on ALD.
Abstract: Atomic layer deposition (ALD) is gaining attention as a thin film deposition method, uniquely suitable for depositing uniform and conformal films on complex three-dimensional topographies. The deposition of a film of a given material by ALD relies on the successive, separated, and self-terminating gas–solid reactions of typically two gaseous reactants. Hundreds of ALD chemistries have been found for depositing a variety of materials during the past decades, mostly for inorganic materials but lately also for organic and inorganic–organic hybrid compounds. One factor that often dictates the properties of ALD films in actual applications is the crystallinity of the grown film: Is the material amorphous or, if it is crystalline, which phase(s) is (are) present. In this thematic review, we first describe the basics of ALD, summarize the two-reactant ALD processes to grow inorganic materials developed to-date, updating the information of an earlier review on ALD [R. L. Puurunen, J. Appl. Phys. 97, 121301 (2005)], and give an overview of the status of processing ternary compounds by ALD. We then proceed to analyze the published experimental data for information on the crystallinity and phase of inorganic materials deposited by ALD from different reactants at different temperatures. The data are collected for films in their as-deposited state and tabulated for easy reference. Case studies are presented to illustrate the effect of different process parameters on crystallinity for representative materials: aluminium oxide, zirconium oxide, zinc oxide, titanium nitride, zinc zulfide, and ruthenium. Finally, we discuss the general trends in the development of film crystallinity as function of ALD process parameters. The authors hope that this review will help newcomers to ALD to familiarize themselves with the complex world of crystalline ALD films and, at the same time, serve for the expert as a handbook-type reference source on ALD processes and film crystallinity.

1,160 citations

Journal ArticleDOI
TL;DR: This critical review assesses the recent developments in the use of graphene-based materials as sorbent or photocatalytic materials for environmental decontamination, as building blocks for next generation water treatment and desalination membranes, and as electrode materials for contaminant monitoring or removal.
Abstract: Graphene-based materials are gaining heightened attention as novel materials for environmental applications The unique physicochemical properties of graphene, notably its exceptionally high surface area, electron mobility, thermal conductivity, and mechanical strength, can lead to novel or improved technologies to address the pressing global environmental challenges This critical review assesses the recent developments in the use of graphene-based materials as sorbent or photocatalytic materials for environmental decontamination, as building blocks for next generation water treatment and desalination membranes, and as electrode materials for contaminant monitoring or removal The most promising areas of research are highlighted, with a discussion of the main challenges that we need to overcome in order to fully realize the exceptional properties of graphene in environmental applications

1,158 citations