Author

# Nicola Marzari

Other affiliations: University of Oxford, Rutgers University, Korea Institute of Science and Technology ...read more

Bio: Nicola Marzari is an academic researcher from École Polytechnique Fédérale de Lausanne. The author has contributed to research in topic(s): Wannier function & Density functional theory. The author has an hindex of 78, co-authored 386 publication(s) receiving 63260 citation(s). Previous affiliations of Nicola Marzari include University of Oxford & Rutgers University.

##### Papers published on a yearly basis

##### Papers

More filters

••

[...]

University of Udine

^{1}, International School for Advanced Studies^{2}, National Research Council^{3}, Massachusetts Institute of Technology^{4}, University of Paris^{5}, Princeton University^{6}, University of Minnesota^{7}, ParisTech^{8}, University of Milan^{9}, International Centre for Theoretical Physics^{10}, University of Paderborn^{11}, ETH Zurich^{12}, École Polytechnique Fédérale de Lausanne^{13}TL;DR: QUANTUM ESPRESSO as discussed by the authors is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave).

Abstract: QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.

15,767 citations

••

[...]

TL;DR: Quantum ESPRESSO as discussed by the authors is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave).

Abstract: Quantum ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). Quantum ESPRESSO stands for "opEn Source Package for Research in Electronic Structure, Simulation, and Optimization". It is freely available to researchers around the world under the terms of the GNU General Public License. Quantum ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively-parallel architectures, and a great effort being devoted to user friendliness. Quantum ESPRESSO is evolving towards a distribution of independent and inter-operable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.

10,655 citations

••

[...]

TL;DR: In this paper, a method for determining the optimally localized set of generalized Wannier functions associated with a set of Bloch bands in a crystalline solid is presented, which is suitable for use in connection with conventional electronic-structure codes.

Abstract: We discuss a method for determining the optimally localized set of generalized Wannier functions associated with a set of Bloch bands in a crystalline solid. By ''generalized Wannier functions'' we mean a set of localized orthonormal orbitals spanning the same space as the specified set of Bloch bands. Although we minimize a functional that represents the total spread Sigma(n)(r(2))(n) - (r)(n)(2) of the Wannier functions in real space, our method proceeds directly from the Bloch functions as represented on a mesh of k points, and carries out the minimization in a space of unitary matrices U-mn((k)) describing the rotation among the Bloch bands at each k point. The method is thus suitable for use in connection with conventional electronic-structure codes. The procedure also returns the total electric polarization as well as the location of each Wannier center. Sample results for Si, GaAs, molecular C2H4, and LiCl will be presented.

2,942 citations

••

[...]

University of Udine

^{1}, University of Lugano^{2}, École Polytechnique Fédérale de Lausanne^{3}, Leipzig University^{4}, University of Paris^{5}, University of North Texas^{6}, Princeton University^{7}, National Research Council^{8}, International School for Advanced Studies^{9}, Cornell University^{10}, University of Lincoln^{11}, University of Milan^{12}, École Polytechnique^{13}, International Centre for Theoretical Physics^{14}, University of Paderborn^{15}, University of Oxford^{16}, Jožef Stefan Institute^{17}, University of Padua^{18}, Sapienza University of Rome^{19}, Vietnam Academy of Science and Technology^{20}, University of British Columbia^{21}, University of Lorraine^{22}, Centre national de la recherche scientifique^{23}, University of Zurich^{24}, École Normale Supérieure^{25}, Université Paris-Saclay^{26}, Wake Forest University^{27}, Temple University^{28}TL;DR: Recent extensions and improvements are described, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.

Abstract: Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software

2,724 citations

••

[...]

TL;DR: Wannier90 is a program for calculating maximally-localised Wannier functions (MLWF) from a set of Bloch energy bands that may or may not be attached to or mixed with other bands, and is able to output MLWF for visualisation and other post-processing purposes.

Abstract: We present wannier90, a program for calculating maximally-localised Wannier functions (MLWF) from a set of Bloch energy bands that may or may not be attached to or mixed with other bands. The formalism works by minimising the total spread of the MLWF in real space. This is done in the space of unitary matrices that describe rotations of the Bloch bands at each k-point. As a result, wannier90 is independent of the basis set used in the underlying calculation to obtain the Bloch states. Therefore, it may be interfaced straightforwardly to any electronic structure code. The locality of MLWF can be exploited to compute band-structure, density of states and Fermi surfaces at modest computational cost. Furthermore, wannier90 is able to output MLWF for visualisation and other post-processing purposes. Wannier functions are already used in a wide variety of applications. These include analysis of chemical bonding in real space; calculation of dielectric properties via the modern theory of polarisation; and as an accurate and minimal basis set in the construction of model Hamiltonians for large-scale systems, in linear-scaling quantum Monte Carlo calculations, and for efficient computation of material properties, such as the anomalous Hall coefficient. wannier90 is freely available under the GNU General Public License from http://www.wannier.org/.

1,938 citations

##### Cited by

More filters

••

[...]

TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.

Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality.
Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

30,199 citations

[...]

TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.

Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

24,496 citations

••

[...]

TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.

Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

18,972 citations

[...]

28 Jul 2005

TL;DR: PfPMP1）与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用，在黏附及免疫逃避中起关键的作�ly.

Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1（PfPMP1）与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用，在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员，通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations