scispace - formally typeset
Search or ask a question
Author

Nicolaas J. R. van Eikema Hommes

Other affiliations: Leipzig University
Bio: Nicolaas J. R. van Eikema Hommes is an academic researcher from University of Erlangen-Nuremberg. The author has contributed to research in topics: Ab initio & Aromaticity. The author has an hindex of 21, co-authored 33 publications receiving 6601 citations. Previous affiliations of Nicolaas J. R. van Eikema Hommes include Leipzig University.

Papers
More filters
Journal ArticleDOI
TL;DR: The use of absolute magnetic shieldings, computed at ring centers with available quantum mechanics programs, are proposed as a new aromaticity/antiaromaticity criterion to establish NICS as an effective aromaticity criterion.
Abstract: The ability to sustain a diatropic ring current is the defining characteristic of aromatic species.1-7 Cyclic electron delocalization results in enhanced stability, bond length equalization, and special magnetic as well as chemical and physical properties.1 In contrast, antiaromatic compounds sustain paratropic ring currents3 despite their localized, destabilized structures.1-7 We have demonstrated the direct, quantitative relationships among energetic, geometrical, and magnetic criteria of aromaticity in a wide-ranging set of aromatic/antiaromatic fivemembered rings.5a While the diamagnetic susceptibility exaltation (Λ) is uniquely associated with aromaticity, it is highly dependent on the ring size (area2) and requires suitable calibration standards.6 Aromatic stabilization energies (ASEs) of strained and more complicated systems are difficult to evaluate. CC bond length variations in polybenzenoid hydrocarbons can be just as large as those in linear conjugated polyenes.2 The abnormal proton chemical shifts of aromatic molecules are the most commonly employed indicators of ring current effects.1 However, the ca. 2-4 ppm displacements of external protons to lower magnetic fields are relatively modest (e.g., δH ) 7.3 for benzene vs 5.6 for dC-H in cyclohexene). In contrast, the upfield chemical shifts of protons located inside aromatic rings are more unusual. The six inner hydrogens of [18]annulene, for example, resonate at -3.0 ppm vs δ ) 9.28 for the outer protons. This relationship is inverted dramatically in the antiaromatic [18]annulene dianion, C18H18, where δ ) 20.8 and 29.5 (in) vs. -1.1 (out).8 Similar demonstrations of paratropic ring currents in antiaromatic compounds are well documented.3,8,9 Chemical shifts of encapsulated 3He atoms are now employed as experimental and computed measures of aromaticity in fullerenes and fullerene derivatives.10 While the rings of most aromatic systems are too small to accommodate atoms internally, the chemical shifts of hydrogens in bridging positions have long been used as aromaticity and antiaromaticity probes.9 δLi+ can be employed similarly, with the advantage that Li+ complexes with individual rings in polycyclic systems can be computed.4,11 We now propose the use of absolute magnetic shieldings, computed at ring centers (nonweighted mean of the heavy atom coordinates) with available quantum mechanics programs,12 as a new aromaticity/antiaromaticity criterion. To correspond to the familiar NMR chemical shift convention, the signs of the computed values are reversed: Negative “nucleus-independent chemical shifts” (NICSs) denote aromaticity; positive NICSs, antiaromaticity (see Table 1 for selected results). Figure 1, a plot of NICSs vs the ASEs for our set of five-membered ring heterocycles,5a provides calibration. The equally good correlations with magnetic susceptibility exaltations and with structural variations establish NICS as an effective aromaticity criterion. Unlike Λ,6 NICS values for [n]annulenes (Table 1) show only a modest dependence on ring size. The 10 π electron systems give significantly higher values than those with 6 π electrons. The antiaromatic 4n π electron compounds, cyclobutadiene (27.6), pentalene (18.1), heptalene (22.7), and planar D4h cyclooctatetraene (30.1), all show highly positive NICSs. Like the Li+-complex probe,4 the NICS evaluates the aromaticity and antiaromaticity contributions of individual rings in polycyclic systems. Scheme 1 (HF/6-31+G*, data from Table 1) shows NICSs for selected examples. The benzenoid aromatic NICSs provide evidence both for localized and “perimeter” models. The naphthalene (1) NICS (-9.9) resembles that of benzene (-9.7), as do the NICSs for the outer rings of phenanthrene (2) (-10.2) and triphenylene (3); the aromaticity of the central rings of the latter two are reduced. The NICS of the central ring of anthracene (4) (-13.3) exceeds the benzene value in contrast to the outer ring NICS (-8.2). Remarkably, the NICS (-7.0) for the seven-membered ring of azulene (5) is very close to that of the tropylium ion (-7.6 ppm), whereas the azulene five-membered ring NICS (-19.7) is even larger in magnitude than that of the cyclopentadienyl anion (-14.3). The four-membered rings in benzocyclobutadiene (6) (NICS ) 22.5) and in biphenylene (7) (19.0) are antiaromatic, but less so than cyclobutadiene itself (27.6). The six-membered rings in these polycycles are still aromatic, but their NICSs (-2.5 (1) (a) Minkin, V. I.; Glukhovtsev, M. N.; Simkin, B. Y. Aromaticity and Antiaromaticity; Wiley: New York, 1994. (b) Garratt, P. J. Aromaticity; Wiley: New York, 1986. (c) Eluidge, J. A.; Jackman, L. M. J. Chem. Soc. 1961, 859. (2) Schleyer, P. v. R.; Jiao, H. Pure Appl. Chem. 1996, 28, 209. (3) Pople, J. A.; Untch, K. G. J. Am. Chem. Soc. 1966, 88, 4811. (4) Jiao, H; Schleyer, P. v. R. AIP Conference Proceedings 330, E.C.C.C.1, Computational Chemistry; Bernardi, F., Rivail, J.-L., Eds.; American Institute of Physics: Woodbury, New York, 1995; p 107. (5) (a) Schleyer, P. v. R.; Freeman, P.; Jiao, H.; Goldfuss, B. Angew. Chem., Int. Ed. Engl. 1995, 34, 337. (b) Jiao, H.; Schleyer, P. v. R. Unpublished IGLO results. (c) Kutzelnigg, W.; Fleischer, U.; Schindler, M. In NMR: Basic Princ. Prog.; Springer: Berlin, 1990; Vol. 23, p 165. (6) Dauben, H. J., Jr.; Wilson, J. D.; Laity, J. L. In Non-Benzenoid Aromatics; Synder, J., Ed.; Academic Press, 1971; Vol. 2, and references cited. The partitioning of ring current or ring current susceptabilitites among various rings in polycyclic syestems were considered earlier, e.g., by Aihara (Aihara, J. J. Am. Chem. Soc. 1985, 207, 298 and refs cited) and by Mallion (Haigh, C. W.; Mallion, J. Chem. Phys. 1982, 76, 1982). (7) Fleischer, U.; Kutzelnigg, W.; Lazzeretti, P.; Mühlenkamp, V. J. Am. Chem. Soc. 1994, 116, 5298. (8) Sondheimer, F. Acc. Chem. Res. 1972, 5, 81. (9) (a) Hunandi, R. J. J. Am. Chem. Soc. 1983, 105, 6889. (b) Pascal, R. A., Jr.; Winans, C. G.; Van Engen, D. J. Am. Chem. Soc. 1989, 111, 3007. (10) (a) Bühl, M.; Thiel, W.; Jiao, H.; Schleyer, P. v. R.; Saunders, M.; Anet, F. A. L. J. Am. Chem. Soc. 1994, 116, 7429 and references cited. (b) Bühl, M.; van Wüllen, C. Chem. Phys. Lett. 1995, 247, 63. The authors have shown that the negative absolute shielding in the center of C60 is nearly the same as δ3He, computed at the same level. (11) Paquette, L. A.; Bauer, W.; Sivik, M. R.; Bühl, M.; Feigel, M.; Schleyer, P. v. R. J. Am. Chem. Soc. 1990, 112, 8776. (12) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94, ReVision B.2; Gaussian Inc., Pittsburgh, PA, 1995. Figure 1. Plot of NICSs (ppm) vs the aromatic stabilization energies (ASEs, kcal/mol)5a for a set of five-membered ring heterocycles, C4H4X (X ) as shown) (cc ) 0.966). 6317 J. Am. Chem. Soc. 1996, 118, 6317

4,921 citations

Journal ArticleDOI
TL;DR: Analysis of the basic π-aromatic (benzene) and antiaromatic systems by dissected nucleus-independent chemical shifts (NICS) shows the contrasting diatropics and paratropic effects, but also reveals subtleties and unexpected details.

836 citations

Journal ArticleDOI
TL;DR: In this paper, the energy gain ΔE associated with the formation of (CH3−Li)n from n Li• and n CH3• radicals is −45.5, −132.7, and −308.6 kcal/mol, respectively.

266 citations

Journal ArticleDOI
TL;DR: In this paper, two pyrrole rings participate in the aromatic structure of porphyrin, and a 22 π-electron description is given, which is better than the usual [18]annulene representation.
Abstract: Two pyrrole rings participate in the aromatic structure of porphyrin. Hence, a 22 π-electron description is better than the usual [18]annulene representation. The dianion and the metal complex system favor different electronic structures.

204 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Five practical examples involving a wide variety of systems and analysis methods are given to illustrate the usefulness of Multiwfn, a multifunctional program for wavefunction analysis.
Abstract: Multiwfn is a multifunctional program for wavefunction analysis. Its main functions are: (1) Calculating and visualizing real space function, such as electrostatic potential and electron localization function at point, in a line, in a plane or in a spatial scope. (2) Population analysis. (3) Bond order analysis. (4) Orbital composition analysis. (5) Plot density-of-states and spectrum. (6) Topology analysis for electron density. Some other useful utilities involved in quantum chemistry studies are also provided. The built-in graph module enables the results of wavefunction analysis to be plotted directly or exported to high-quality graphic file. The program interface is very user-friendly and suitable for both research and teaching purpose. The code of Multiwfn is substantially optimized and parallelized. Its efficiency is demonstrated to be significantly higher than related programs with the same functions. Five practical examples involving a wide variety of systems and analysis methods are given to illustrate the usefulness of Multiwfn. The program is free of charge and open-source. Its precompiled file and source codes are available from http://multiwfn.codeplex.com.

17,273 citations

Journal ArticleDOI
TL;DR: The “Activation‐strain TS interaction” (ATS) model of chemical reactivity is reviewed as a conceptual framework for understanding how activation barriers of various types of reaction mechanisms arise and how they may be controlled, for example, in organic chemistry or homogeneous catalysis.
Abstract: We present the theoretical and technical foundations of the Amsterdam Density Functional (ADF) program with a survey of the characteristics of the code (numerical integration, density fitting for the Coulomb potential, and STO basis functions). Recent developments enhance the efficiency of ADF (e.g., parallelization, near order-N scaling, QM/MM) and its functionality (e.g., NMR chemical shifts, COSMO solvent effects, ZORA relativistic method, excitation energies, frequency-dependent (hyper)polarizabilities, atomic VDD charges). In the Applications section we discuss the physical model of the electronic structure and the chemical bond, i.e., the Kohn–Sham molecular orbital (MO) theory, and illustrate the power of the Kohn–Sham MO model in conjunction with the ADF-typical fragment approach to quantitatively understand and predict chemical phenomena. We review the “Activation-strain TS interaction” (ATS) model of chemical reactivity as a conceptual framework for understanding how activation barriers of various types of (competing) reaction mechanisms arise and how they may be controlled, for example, in organic chemistry or homogeneous catalysis. Finally, we include a brief discussion of exemplary applications in the field of biochemistry (structure and bonding of DNA) and of time-dependent density functional theory (TDDFT) to indicate how this development further reinforces the ADF tools for the analysis of chemical phenomena. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 931–967, 2001

8,490 citations

Journal ArticleDOI
TL;DR: This chapter discusses the development of DFT as a tool for Calculating Atomic andMolecular Properties and its applications, as well as some of the fundamental and Computational aspects.
Abstract: I. Introduction: Conceptual vs Fundamental andComputational Aspects of DFT1793II. Fundamental and Computational Aspects of DFT 1795A. The Basics of DFT: The Hohenberg−KohnTheorems1795B. DFT as a Tool for Calculating Atomic andMolecular Properties: The Kohn−ShamEquations1796C. Electronic Chemical Potential andElectronegativity: Bridging Computational andConceptual DFT1797III. DFT-Based Concepts and Principles 1798A. General Scheme: Nalewajski’s ChargeSensitivity Analysis1798B. Concepts and Their Calculation 18001. Electronegativity and the ElectronicChemical Potential18002. Global Hardness and Softness 18023. The Electronic Fukui Function, LocalSoftness, and Softness Kernel18074. Local Hardness and Hardness Kernel 18135. The Molecular Shape FunctionsSimilarity 18146. The Nuclear Fukui Function and ItsDerivatives18167. Spin-Polarized Generalizations 18198. Solvent Effects 18209. Time Evolution of Reactivity Indices 1821C. Principles 18221. Sanderson’s Electronegativity EqualizationPrinciple18222. Pearson’s Hard and Soft Acids andBases Principle18253. The Maximum Hardness Principle 1829IV. Applications 1833A. Atoms and Functional Groups 1833B. Molecular Properties 18381. Dipole Moment, Hardness, Softness, andRelated Properties18382. Conformation 18403. Aromaticity 1840C. Reactivity 18421. Introduction 18422. Comparison of Intramolecular ReactivitySequences18443. Comparison of Intermolecular ReactivitySequences18494. Excited States 1857D. Clusters and Catalysis 1858V. Conclusions 1860VI. Glossary of Most Important Symbols andAcronyms1860VII. Acknowledgments 1861VIII. Note Added in Proof 1862IX. References 1865

3,890 citations

Journal ArticleDOI
TL;DR: Some recent examples where dynamic covalent chemistry has been demonstrated are shown to emphasise the basic concepts of this area of science.
Abstract: Dynamic covalent chemistry relates to chemical reactions carried out reversibly under conditions of equilibrium control. The reversible nature of the reactions introduces the prospects of "error checking" and "proof-reading" into synthetic processes where dynamic covalent chemistry operates. Since the formation of products occurs under thermodynamic control, product distributions depend only on the relative stabilities of the final products. In kinetically controlled reactions, however, it is the free energy differences between the transition states leading to the products that determines their relative proportions. Supramolecular chemistry has had a huge impact on synthesis at two levels: one is noncovalent synthesis, or strict self-assembly, and the other is supramolecular assistance to molecular synthesis, also referred to as self-assembly followed by covalent modification. Noncovalent synthesis has given us access to finite supermolecules and infinite supramolecular arrays. Supramolecular assistance to covalent synthesis has been exploited in the construction of more-complex systems, such as interlocked molecular compounds (for example, catenanes and rotaxanes) as well as container molecules (molecular capsules). The appealing prospect of also synthesizing these types of compounds with complex molecular architectures using reversible covalent bond forming chemistry has led to the development of dynamic covalent chemistry. Historically, dynamic covalent chemistry has played a central role in the development of conformational analysis by opening up the possibility to be able to equilibrate configurational isomers, sometimes with base (for example, esters) and sometimes with acid (for example, acetals). These stereochemical "balancing acts" revealed another major advantage that dynamic covalent chemistry offers the chemist, which is not so easily accessible in the kinetically controlled regime: the ability to re-adjust the product distribution of a reaction, even once the initial products have been formed, by changing the reaction's environment (for example, concentration, temperature, presence or absence of a template). This highly transparent, yet tremendously subtle, characteristic of dynamic covalent chemistry has led to key discoveries in polymer chemistry. In this review, some recent examples where dynamic covalent chemistry has been demonstrated are shown to emphasise the basic concepts of this area of science.

1,880 citations

01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations